首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocomposites based on biodegradable poly(?‐caprolactone) (PCL) and layered silicates (montmorillonite, MMT) were prepared either by melt interaction with PCL or by in situ ring‐opening polymerization of ?‐caprolactone as promoted by the so‐called coordination‐insertion mechanism. Both non‐modified clays (Na+ ‐MMT) and silicates modified by various alkylammonium cations were studied. Mechanical and thermal properties were examined by tensile testing and thermogravimetric analysis. Even at a filler content as low as 3 wt% of inorganic layered silicate, the PCL‐layered silicate nanocomposites exhibited improved mechanical properties (higher Young's modulus) and increased thermal stability as well as enhanced flame retardant characteristics as a result of a charring effect. It was shown that the formation of PCL‐based nanocomposites depended not only on the nature of the ammonium cation and related functionality but also on the selected synthetic route, melt intercalation vs. in situ intercalative polymerization. Interestingly enough, when the intercalative polymerization of ?‐caprolactone was carried out in the presence of MMT organo‐modified with ammonium cations bearing hydroxyl functions, nanocomposites with much improved mechanical properties were recovered. Those hybrid polyester layered silicate nanocomposites were characterized by a covalent bonding between the polyester chains and the clay organo‐surface as a result of the polymerization mechanism, which was actually initiated from the surface hydroxyl functions adequately activated by selected tin (II) or tin (IV) catalysts.  相似文献   

2.
Nonextractable styrene–acrylonitrile copolymer–montmollironite (SAN–MMT) nanocomposites were prepared by two different intercalation process: (1) a usual one‐step emulsion copolymerization in the presence of the Na+–MMT; and (2) a solution copolymerization with MMT modified by dimethyl dihydrogenated tallow ammonium. For comparative purposes, the copolymerization conditions (such as comonomer feed ratio and the polymerization temperature and times) were set up to be the same. The X‐ray diffraction pattern demonstrated that the net increase of basal spacing of the purified emulsion products (0.76 nm) far exceeded that of composite (0.39 nm) prepared by solution method. The average molecular masses recovered from the composite extracts revealed Mw = 53 × 104 for emulsion products, while the composite made by solution yielded Mw = 4.8 × 104 g/mol. Likewise, the hybrid from the emulsion polymerization exhibited higher stress at maximum load over the solution products. The dispersibility of MMT particles in the polymer matrix was investigated by using optical microscopy (OM) and scanning electron microscopy (SEM) for those unextracted samples. It was found that almost complete hybrids were obtained when the styrene (ST)–acrylonitryl (AN) comonomer was emulsion polymerized in the presence of Na+–MMT, yielding both better miscibility and intercalation capability. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2811–2819, 1999  相似文献   

3.
Polyurethane/clay nanocomposites have been synthesized using Na+‐montmorillonite (Na+‐MMT)/amphiphilic urethane precursor (APU) chains that have hydrophilic polyethylene oxide (PEO) chains and hydrophobic segments at the same molecules. Nanocomposites were synthesized through two different crosslinking polymerization methods. One is UV curing of melt mixed APU/Na+‐MMT mixtures; the other is coalescence polymerization of APU/Na+‐MMT emulsions. These two kinds of composites had intercalated silicate layers of Na+‐montmorillonite by insertion of PEO chains in APU chains, which was confirmed by X‐ray diffraction measurement and transmission electron microscopy. These composite films also showed improved mechanical properties compared to pristine APU films. Although the two kinds of nanocomposites exhibited the same degree of intercalation and were synthesized based on the same precursor chains, these nanocomposite films had the different mechanical properties. Nanocomposites synthesized using APU/Na+‐MMT emulsions, having microphase‐separated structure, had greater tensile strength than those prepared with melt‐mixed APU/Na+‐MMT mixtures. Location of intercalated Na+‐MMT by PEO chains at the oil–water interface also could be confirmed by rheological behavior of the APU/Na+‐MMT/water mixture. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3130–3136, 2003  相似文献   

4.
In this work, the effects of different cation‐exchanged montmorillonite on water absorbency of poly(acrylic acid‐co‐acrylamide)/montmorillonite/sodium humate (PAA‐AM/MMT/SH) superabsorbent composite were systematically investigated under the same preparation conditions. The superabsorbents doped with different cation‐exchanged montmorillonite were characterized by Fourier‐transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy technologies. Swelling behaviors of developing superabsorbent composite in various cationic saline solutions (NaCl, CaCl2, and FeCl3) were also investigated. The water absorbencies of superabsorbent composite with 20 wt% MMT and 30 wt% SH are 638, 723, 682, and 363 g g−1 in distilled water for incorporating natural Na+‐MMT, Li+‐exchanged MMT, Ca2+‐exchanged MMT, and Al3+‐exchanged MMT, respectively. The results showed that the cation‐exchange process had some obvious influences on final water absorbency of superabsorbent composite. NaCl, CaCl2, and FeCl3 solutions did not alter the swelling characteristics of the superabsorbent materials at a concentration of less than 0.01 mM, however, a concentration of greater than 0.1 mM caused a collapse in the swelling curves. The excellent swelling‐reswelling‐swelling behavior and lower swelling rate testified that Al3+‐exchanged MMT can act as an assistant crosslinker in the polymeric network. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

5.
Functional copolymer/organo‐silicate [N,N′‐dimethyldodecyl ammonium cation surface modified montmorillonite (MMT)] layered nanocomposites have been synthesized by interlamellar complex‐radical copolymerization of preintercalated maleic anhydride (MA)/ organo‐MMT complex as a ‘nano‐reactor’ with n‐butyl methacrylate (BMA) as an internal plasticization comonomer in the presence of radical initiator. Synthesized copolymers and their nanocomposites were investigated by dynamic mechanic analysis, X‐ray diffraction, SEM, and TEM methods. It was found that nanocomposite dynamic mechanical properties strongly depend on the force of interfacial MA … organo‐MMT complex formation and the amount of flexible n‐butyl ester linkages. An increase in both of these parameters leads to enhanced intercalation and exfoliation in situ processes of copolymer chains and the formation of hybrid nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
The dispersion of MMT‐Na+ (montmorillonite) layers in a chitosan polymer matrix, using the homogenization, was performed. The effect of shear rate was characterized on the mechanical, barrier, and structural properties of nanocomposites. Elongation at break (EAB) was unaffected by shear rate, which decreased after homogenization, increased above 13,000 rpm, however, tensile strength (TS) dramatically increased up to 59 MPa at 16,000 rpm. Water vapor permeability (WVP) and oxygen permeability (OP) of the homogenized nanocomposite decreased more than that of untreated nanocomposite and OP was not significantly changed above 16,000 rpm of shear rate. XRD result and TEM images indicated that three types of tactoids, exfoliation, and intercalation were generated and the largest distance of 18.87 Å between MMT‐Na+ layers was produced at 16,000 rpm. The results indicate that homogenization was a beneficial method for effectively dispersing MMT‐Na+ layers in a chitosan polymer matrix and that a shear rate of 16,000 rpm was the effective condition. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
Polystyrene‐clay nanocomposite (PsCN) materials were synthesized and their properties of crystallinity, thermal behavior, and dielectric characteristics were investigated. A polymerizable cationic surfactant, [2‐(dimethylamino)ethyl]triphenylphonium bromide, was used for the intercalation of montmorillonite (MMT). The organophilic MMT was prepared by Na+‐exchanged MMT and ammonium cations of a cationic surfactant in an aqueous medium. Organophilic styrene monomers were intercalated into the interlayer regions of organophilic clay hosts followed by a free‐radical polymerization. Exfoliation to 2 wt % MMT in the polystyrene (PS) matrix was achieved as revealed by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Thermal properties by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were also studied. The dielectric properties of PsCNs in the form of film with clay loading from 1.0 to 5.0 wt % were measured under frequencies of 100 Hz–1 MHz at 25–70°C. A decreased dielectric constant and low dielectric loss were observed for PsCN materials. The dielectric response at low frequency that originated from dipole orientation was suppressed due to the intercalation of clay materials. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1368–1373, 2004  相似文献   

8.
Organo‐modification of montmorillonite (MMT) is crucial for the promotion of a fine dispersion of MMT into an (often hydrophobic) polymer matrix. Ammonium‐terminated polymers are more efficient in modifying clay compared to small organic cations such as alkyl ammoniums or side functionalized polymers. Herein, tri‐amino end functional polyethylene (PE‐3 N) with low molecular weight was first synthesized via an efficient and robust epoxide ring‐opening reaction by treating epoxide‐terminated PE with diethylenetriamine. The chemical structure of PE‐3 N was unambitiously characterized by chromatographic and spectral methods. By reacting with excess HCl, PE‐3 N was subsequently converted to tri‐ammonium end functional polyethylene (PE‐3 N+), which serves as an intercalation agent of MMT. By adjusting the weight ratio of PE‐3 N+ to pristine MMT (RP/M) applied in the static melt intercalation process, correlations between the extent of exfoliation and RP/M were successfully established. XRD results revealed that complete exfoliation of MMT could be afforded with RP/M as low as 1, which is the lowest value ever reported for ammonium‐terminated polymers applied as intercalation agents. SEM micrographs showed that MMT sheets were swollen by PE‐3 N+, affirming the successful modification of MMT. The PE modified MMT obtained may find application in preparing high‐performance PE/MMT nanocomposites. © 2017 Society of Chemical Industry  相似文献   

9.
Polyamide 6/Na+ montmorillonite (Na+ MMT) nanocomposites (NCs) were produced in a corotating twin screw extruder. Water was injected into the extruder as an intercalating/exfoliating agent. The wide angle X‐ray diffraction and linear dynamic measurements were used to investigate the structure of the prepared samples. The results showed that the contact time between water and melt PA6/Na+MMT in the extruder is an important factor to achieve a high level of exfoliation. The ratio of water‐injection rate to clay feeding rate did not reveal a major effect on the exfoliation of pristine MMT. The results also demonstrated that the order of injection of water during the mixing process did not have a distinguishable effect on the level of exfoliation. This processing method was found to be controlled by a diffusion mechanism caused by the presence of water molecules during the process. Improvement of tensile properties is in a great agreement with the rheological and morphological findings. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Films of poly(methyl methacrylate) (PMMA)/sodium montmorillonite (Na+‐MMT) nanocomposites have been successfully prepared utilizing Na+‐MMT by N,N‐dimethylformamide solution casting. The nanocomposite films show high transparency, enhanced thermal resistance, and mechanical properties in comparison with the neat polymer film. The transparency of the films was investigated by UV‐vis spectra. The exfoliated dispersion of Na+‐MMT platelets in nanocomposites were investigated by X‐ray diffraction and transmission electron microscopy. The enhanced thermal resistance and mechanical properties of PMMA were studied by thermal gravimetric analysis and dynamic mechanical analysis, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Polyaniline (PANI)–organoclay/Epoxy (EP) nanocomposites were prepared. PANI–organoclay nanocomposites were used as curing agent for EP. Organoclay was prepared by an ion exchange process between sodium cations in MMT and NH3+ groups in polyoxypropylene (D230). PANI–organoclay nanocomposite was synthesized by in situ polymerization of aniline in (14 wt%) organoclay. Infrared spectra and differential scanning calorimetry confirm the curing of EP. The absence of d001 diffraction band of organoclay in the nanocomposites was observed by X‐ray diffraction. The structure argument was further supported by scanning electron microscopy and transmission electron microscopy. Electrical conductivity of the nanocomposites within the range 2.1 × 10−7–3.2 × 10−7 S/cm depending on the concentration of the PANI/D230‐MMT. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

12.
Melamine‐modified montmorillonite (MA‐MMT) was prepared via cation exchange. The intercalation behavior was investigated by Fourier transform infrared spectrometer (FT‐IR), X‐ray photoelectron spectroscopy (XPS), and X‐ray diffraction (XRD). The results showed that the d‐spacing value increased from 1.25 nm for Na‐montmorillonite (Na+MMT) to 1.53 nm for MA‐MMT. Different kinds of montmorillonite combined with melamine pyrophosphate (MPP) were used to prepare flame‐retardant polyamide 6 (FR‐PA6). Flame retardance of FR‐PA6 samples was investigated by limiting oxygen index (LOI), UL‐94 vertical burning method, and cone calorimeter test. Morphology and component of char residues for FR‐PA6 were investigated by scanning electron microscope (SEM) and XPS. It was found that MA‐MMT/MPP system contributed both excellent flame retardance and anti‐dripping ability for PA6. MA‐MMT particles can fill flaws of char residues and strengthen the char layer, leading to form more intumescent char layer. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

13.
Organo‐montmorillonite/nitrile rubber (NBR) nanocomposites were prepared by a melt intercalation process. The characteristics of NBR nanocomposites were determined by an oscillating disk rheometer and transmission electron microscopy. The cure characteristics were investigated according to the change in clay content and clay types. This study confirmed that organo‐montmorillonite/NBR nanocomposites have various cure characteristics, namely minimum torque, maximum torque, scorch time and curing time, according to the change in clay content and clay types. In particular, as the chain length of the modifier used for the treatment of Na+‐MMT following vulcanization increases, scorch time and optimum curing time are reduced. This is because, as the chain length of the modifier increases, organo‐MMT is distributed more equally during the formation of the nanocomposites. As swelling increases, the chain length of the clay modifier expands and then constitutes a better barrier. Copyright © 2003 Society of Chemical Industry  相似文献   

14.
Uranyl ion (UO22+) sorption properties of polyelectrolyte composite hydrogels made by the polymerization of acrylamide (AAm) with 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS) and clay such as bentonite (Bent) were investigated as a function of composition to find materials with swelling and uranyl ion sorption properties. Highly swollen AAm/AMPS hydrogels and AAm/AMPS/Bent composite hydrogels were prepared by free radical solution polymerization in aqueous solutions of AAm with AMPS as co‐monomer and two multifunctional crosslinkers such as ethylene glycol dimethacrylate (EGDMA) and 1,4 butanediol dimethacrylate (BDMA). Swelling experiments were performed in water at 25°C, gravimetrically. The influence of AMPS content in hydrogels was examined. Uranyl ion adsorption from aqueous solutions was studied by batch sorption technique at 25°C. The effect of uranyl ion concentration and mass of AMPS on the uranyl ion adsorption were examined. Finally, adsorption capacity (the amount of sorbed uranyl ion per gram of dry hydrogel) (q) was calculated to be 0.67 × 10−3–2.11 × 10−3 mol uranyl ion per gram for the hydrogels. Removal effiency of uranyl ions (RE%) was changed range 9.05–29.92%. The values of partition ratio (Kd) of uranyl ions was calculated to be 0.10–0.43 for AAm/AMPS hydrogels and AAm/AMPS/Bent composite hydrogels, respectively. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

15.
D. Xie  W. Guo  R. Guo  Z. Liu  D. Sun  L. Meng  M. Zheng  B. Wang 《Fuel Cells》2016,16(6):829-838
A series of iron‐based perovskite oxides BaFe1−xCuxO3−δ (x = 0.10, 0.15, 0.20 and 0.25, abbreviated as BFC‐10, BFC‐15, BFC‐20 and BFC‐25, respectively) as cathode materials have been prepared via a combined EDTA‐citrate complexing sol‐gel method. The effects of Cu contents on the crystal structure, chemical stability, electrical conductivity, thermal expansion coefficient (TEC) and electrochemical properties of BFC‐x materials have been studied. All the BFC‐x samples exhibit the cubic phase with a space group Pm3m (221). The electrical conductivity decreases with increasing Cu content. The maximum electrical conductivity is 60.9 ± 0.9 S cm−1 for BFC‐20 at 600 °C. Substitution of Fe by Cu increases the thermal expansion coefficient. The average TEC increases from 20.6 × 10−6 K−1 for BFC‐10 to 23.7 × 10−6 K−1 for BFC‐25 at the temperature range of 30–850 °C. Among the samples, BFC‐20 shows the best electrochemical performance. The area specific resistance (ASR) of BFC‐20 on SDC electrolyte is 0.014 Ω cm2 at 800 °C. The single fuel cell with the configguration of BFC‐20/SDC/NiO‐SDC delivers the highest power density of 0.57 W cm−2 at 800 °C. The favorable electrochemical activities can be attributed to the cubic lattice structure and the high oxygen vacancy concentration caused by Cu doping.  相似文献   

16.
L. Wu  D. Zhou  H. Wang  Q. Pan  J. Ran  T. Xu 《Fuel Cells》2015,15(1):189-195
For improving stability without sacrificing ionic conductivity, ionically cross‐linked proton conducting membranes are fabricated from Na+‐form sulfonated poly(phthalazinone ether sulfone kentone) (SPPESK) and H+‐formed sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO). Ionically acid‐base cross‐linking between sulfonic acid groups in SPPO and phthalazone groups in SPPESK impart the composite membranes the good miscibility and electrochemical performance. In particular, the composite membranes possess proton conductivity of 60–110 mS cm−1 at 30 °C. By controlling the protonation degree of SPPO within 40–100 %, the composite membranes with favorable cross‐linking degree are qualified for application in fuel cells. The maximum power density of the composite membrane reaches approximately 1100 mW cm−2 at the current density of 2800 mA cm−2 at 70 °C.  相似文献   

17.
Nanocomposites films were designed from soy protein isolates (SPI), clays (Na+‐MMT), and eugenol an antimicrobial agent. Interactions between Na+‐MMT and eugenol were evidenced by a shift of the d‐spacing by X‐ray diffraction analysis. The addition of Na+‐MMT (5 and 7.5% w/w) in SPI solution increased its shear thinning behavior and its consistency. Accordingly, a good exfoliation of clays in SPI films was observed. The glass transition temperature of SPI films was impacted by the clays addition but not the water vapor permeability. In contrast, the addition of eugenol in SPI solution did not affected the consistency but induced a decrease of the SPI film Tg and an increase of the water vapor permeability. The presence of eugenol counterbalanced the effect of clays on consistency of film‐forming solution. The clay intercalation process was facilitated and the water vapor permeability and active agent release were modified. The presence of clay did not affect the antibacterial effect of eugenol/SPI films. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45941.  相似文献   

18.
Nanocomposite (NC) gels based on natural rubber (NR) and styrene butadiene rubber (SBR) were prepared by using a unique latex blending technique. These NC gels were prepared by first blending the water swollen unmodified montmorillonite clay (Na+‐MMT) suspension into the respective latices followed by prevulcanization to generate crosslinked nanogels. Use of water assisted fully delaminated Na+‐MMT suspension resulted in predominantly exfoliated morphology in the NC gels, as revealed by X‐ray diffraction study and transmission electron microscopy. Addition of Na+‐MMT significantly improved various physical, mechanical and thermal properties of these NC gels. For example, 6 phr of Na+‐MMT loaded NR based NC gels registered 54% and 200% increase in tensile strength and Young's modulus, respectively, compared to the unfilled NR gels. SBR based NC gels also showed similar level of improvement in mechanical properties. Mechanical properties of NC gels prepared using this route were also compared with the NC gels prepared by co‐coagulation and conventional curing technique and found to be superior. In the case of dynamic mechanical properties, NC gels showed higher glass transition temperatures along with a concomitant increase in storage moduli, compared to the unfilled gels. These Na+‐MMT reinforced NC gels also exhibited markedly improved thermal stability. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
In this work, nanocomposites with simultaneous dispersion of multiwalled carbon nanotubes (MWCNT) and montmorillonite clays in an epoxy matrix were prepared by in situ polymerization. A high energy sonication was employed as the dispersion method, without the aid of solvents in the process. The simultaneous dispersion of clays with carbon nanotubes (CNT) in different polymeric matrices has shown a synergic potential of increasing mechanical properties and electrical conductivity. Two different montmorillonite clays were used: a natural (MMT‐Na+) and an organoclay (MMT‐30B). The nanocomposites had their electrical conductivity (σ) and dielectric constant (εr) measured by impedance spectroscopy. The sharp increase in electrical conductivity was found between 0.10 and 0.25 wt% of the MWCNTs. Transmission electron microscopy (TEM) of the samples showed a lower tendency of MWCNT segregation on the MMT‐30B clay surface, which is connected to intercalation/exfoliation in the matrix, that generates less free volume available for MWCNTs in the epoxy matrix. Data from electrical measurement showed that simultaneously adding organoclay reduces the electrical conduction in the nanocomposite. Moreover, conductivity and permittivity dispersion in low frequency suggest agglomeration of nanotubes surrounding the natural clay (MMT‐Na+) particles, which is confirmed by TEM. POLYM. COMPOS., 37:1603–1611, 2016. © 2014 Society of Plastics Engineers  相似文献   

20.
Ethyl vinyl acetate (EVA) copolymers are potential materials for biomedical applications due to their exceptional mechanical properties and biocompatibility. As new medical device designs continue to reduce in size, new materials are required that exhibit improved strength and toughness. In this research, EVA nanocomposites containing synthetic montmorillonite (MMT) are being investigated as new biomedical materials with similar flexibility, biocompatibility, and biostability to neat EVA, but with far superior tensile strength and toughness. We show that the pre‐dispersing of the organo‐MMT prior to melt compounding with the EVA matrix can facilitate nanofiller exfoliation and dispersion in the EVA, thereby enabling significant improvement of EVA nanocomposite performance when high organo‐MMT loading (5 wt %) was added. It was observed that the polarity of pre‐dispersing medium influenced the nanofiller's surfactant organization and distribution, organo‐MMT exfoliation, and dispersion in the EVA, and also interphases of the host copolymer. Consequently, changes in morphology have brought noticeable effects on the mechanical and thermal properties of the EVA. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43204.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号