首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we practically demonstrated spectrum‐splitting approach for advances in efficiency of photovoltaic cells. Firstly, a‐Si:H//c‐Si 2‐junction configuration was designed, which exhibited 24.4% efficiency with the spectrum splitting at 620 nm. Then, we improved the top cell property by employing InGaP cells instead of the a‐Si:H, resulting in an achievement of efficiency about 28.8%. In addition, we constructed 3‐junction spectrum‐splitting system with two optical splitters, and GaAs solar cells as middle cell. This InGaP//GaAs//c‐Si architecture was found to deliver 30.9% conversion efficiency. Our splitting system includes convex lenses for light concentration about 10 suns, which provided concentrated efficiency exceeding 33.0%. These results suggest that our demonstration of 3‐junction spectrum‐splitting approach can be a promising candidate for highly efficient photovoltaic technologies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Extensive research efforts have been recently devoted to the development of self‐driven electrocatalytic water‐splitting systems to generate clean hydrogen chemical fuels. Currently, self‐driven electrocatalytic water‐splitting devices are powered by solar cells, which operate intermittently, or by aqueous batteries, which deliver stored electric power, leading to high operating costs and environmental pollution. Thus, a fully solar‐powered uninterrupted overall water‐splitting system is greatly desirable. Here, the solar cells, stable output voltage of 1.75 V Ni–Zn batteries, and high efficiency zinc–nickel–cobalt phosphide electrocatalysts are successfully assembled together to create a 24 h overall water‐splitting system. Specifically, the silicon‐based solar cells enable the charging of aqueous Ni–Zn batteries for energy storage as well as providing sufficient energy for electrocatalysis throughout the day; in addition, the high‐capacity Ni–Zn batteries offer a steady output voltage for overall water‐splitting at night. Such an uninterrupted solar‐to‐hydrogen system opens up exciting opportunities for the development and applications of renewable energy.  相似文献   

3.
A cylindrical transparent conductive oxide‐less dye‐sensitized solar cell (DSSC) consisting of glass tube/stainless steel mesh–TiO2–dye/gel electrolytes/Pt‐Ti rod having capability of self‐light trapping is reported. Replacing the glass tube with heat‐shrinkable tube to reduce electrolyte gap and optical loss due to light transmission and reflection led to the enhancement in the power conversion efficiency from 2.61% to 3.91%. Profiling of the current distribution measured by laser beam‐induced current exhibited nearly the same current in the axial and radial directions, suggesting that light reflection on a cylindrical DSSC does not affect the efficiency seriously. Optimized best DSSC in this novel device architecture gave a short‐circuit current density of 11.94 mA/cm2, an open‐circuit voltage of 0.71 V and a fill factor of 0.66 leading to the power conversion efficiency of 5.58% at AM 1.5 under simulated solar irradiation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
We present a universally applicable 3D‐printed external light trap for enhanced absorption in solar cells. The macroscopic external light trap is placed at the sun‐facing surface of the solar cell and retro‐reflects the light that would otherwise escape. The light trap consists of a reflective parabolic concentrator placed on top of a reflective cage. Upon placement of the light trap, an improvement of 15% of both the photocurrent and the power conversion efficiency in a thin‐film nanocrystalline silicon (nc‐Si:H) solar cell is measured. The trapped light traverses the solar cell several times within the reflective cage thereby increasing the total absorption in the cell. Consequently, the trap reduces optical losses and enhances the absorption over the entire spectrum. The components of the light trap are 3D printed and made of smoothened, silver‐coated thermoplastic. In contrast to conventional light trapping methods, external light trapping leaves the material quality and the electrical properties of the solar cell unaffected. To explain the theoretical operation of the external light trap, we introduce a model that predicts the absorption enhancement in the solar cell by the external light trap. The corresponding calculated path length enhancement shows good agreement with the empirically derived value from the opto‐electrical data of the solar cell. Moreover, we analyze the influence of the angle of incidence on the parasitic absorptance to obtain full understanding of the trap performance. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons, Ltd.  相似文献   

5.
A compact platform for testing solar cells is presented. The light source comprises a multi‐wavelength high‐power LED (light emitting diode) array allowing the homogenous illumination of small laboratory solar cell devices (substrate size 50 × 25 mm) within the 390–940 nm wavelength range. The spectrum can be synthesized by independent tuning of the 18 different wavelengths to mimic AM1.5G as well as various indoor lamp spectra. The intensity can be controlled with a 214‐bit accuracy and intensities up to 3 suns are possible with an approximate AM1.5G spectral distribution. For several wavelengths intensities up to 10 suns is possible, and for a few wavelengths up to 30 suns can be reached. The setup is equipped with reference diodes and an optical fibre coupling enabling calibration, monitoring and control of the light impinging on the sample. Through a computer controlled interface, it is possible to perform all the commonly employed measurements on the solar cell at very high speed without moving the sample. In particular, the LED‐based illumination system provides an alternative to light‐biased incident photon‐to‐current efficiency measurement to be performed which we demonstrate. Both top and bottom contact is possible and the atmosphere can be controlled around the sample during measurements. The setup was developed for the field of polymer and organic solar cells with particular emphasis on enabling different laboratories to perform measurements in the same manner and obtain a common basis for comparing data. The use of the platform is demonstrated using a standard P3HT:PCBM polymer solar cell but is generally applicable to any solar cell technology with a spectral response in the 390–950 nm region. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A new type of ruthenium complexes 6 – 8 with tridentate bipyridine–pyrazolate ancillary ligands has been synthesized in an attempt to elongate the π‐conjugated system as well as to increase the optical extinction coefficient, possible dye uptake on TiO2, and photostability. Structural characterization, photophysical studies, and corresponding theoretical approaches have been made to ensure their fundamental basis. As for dye‐sensitized solar cell applications, it was found that 6 – 8 possess a larger dye uptake of 2.4 × 10–7 mol cm–2, 1.5 × 10–7 mol cm–2, and 1.3 × 10–7 mol cm–2, respectively, on TiO2 than that of the commercial N3 dye (1.1 × 10–7 mol cm–2). Compound 8 works as a highly efficient photosensitizer for the dye‐sensitized nanocrystalline TiO2 solar cell, producing a 5.65 % solar‐light‐to‐electricity conversion efficiency (compare with 6.01 % for N3 in this study), a short‐circuit current density of 15.6 mA cm–2, an open‐circuit photovoltage of 0.64 V, and a fill factor of 0.57 under standard AM 1.5 irradiation (100 mW cm–2). These, in combination with its superior thermal and light‐soaking stability, lead to the conclusion that the concomitant tridentate binding properties offered by the bipyridine‐pyrazolate ligand render a more stable complexation, such that extended life spans of DSSCs may be expected.  相似文献   

7.
To achieve high energy conversion efficiency, a solar module architecture called lateral spectrum splitting concentrator photovoltaics (LSSCPV) is being developed. LSSCPV can concentrate available sunlight and laterally split a single beam into bands with different spectra for absorption by different solar cells with band gaps matched to the split spectrum. Test assemblies of a sample LSSCPV architecture were constructed, each of which contains four p–n junctions and two optical pieces. Independent experiments or simulations had been implemented on the components but by using optimal assumptions. In order to examine the actual performances of all the components, which are dependent on each other and the light source, direct outdoor measurements were made. A set of self‐consistent efficiency definitions was articulated and a test bed was developed to measure the parameters required by the efficiency calculation. By comparing the component efficiency items derived from the outdoor measurement and the expected values based on independent simulations, the potential opportunities for efficiency improvement are determined. In the outdoor measurement at the University of Delaware, the optical component demonstrated 89·1% efficiency. Additional assemblies were tested at the National Renewable Energy Laboratory. One assembly demonstrated 36·7% submodule efficiency, which compares favorably with the 32·6% previously reported verified submodule efficiency. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Plastic solar cells have been fabricated using a low‐bandgap alternating copolymer of fluorene and a donor–acceptor–donor moiety (APFO‐Green1), blended with 3′‐(3,5‐bis‐trifluoromethylphenyl)‐1′‐(4‐nitrophenyl)pyrazolino[70]fullerene (BTPF70) as electron acceptor. The polymer shows optical absorption in two wavelength ranges, λ < 500 nm and 600 < λ < 1000 nm. The BTPF70 absorbs light at λ < 700 nm. A broad photocurrent spectral response in the wavelength range 300 < λ < 1000 nm is obtained in solar cells. A photocurrent density of 3.4 mA cm–2, open‐circuit voltage of 0.58 V, and power‐conversion efficiency of 0.7 % are achieved under illumination of AM1.5 (1000 W m–2) from a solar simulator. Synthesis of BTPF70 is presented. Photoluminescence quenching and electrochemical studies are used to discuss photoinduced charge transfer.  相似文献   

9.
A one‐dimensional semi‐coherent optical model for thin‐film solar cells is presented. The optical circumstances at flat interfaces are addressed and the situation at rough interfaces in the model is described for the case of direct (coherent) incident and scattered (incoherent) incident light. After the model has been experimentally verified, analysis of the light scattering process in hydrogenated amorphous silicon (a‐Si:H) p–i–n solar cells is carried out. The influence of the interface root‐mean‐square roughness and the effect of different angular distribution functions of diffused light on quantum efficiency and short‐circuit current are investigated by the optical model. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Until this day, the most efficient Cu(In,Ga)Se2 thin film solar cells have been prepared using a rather complex growth process often referred to as three‐stage or multistage. This family of processes is mainly characterized by a first step deposited with only In, Ga and Se flux to form a first layer. Cu is added in a second step until the film becomes slightly Cu‐rich, where‐after the film is converted to its final Cu‐poor composition by a third stage, again with no or very little addition of Cu. In this paper, a comparison between solar cells prepared with the three‐stage process and a one‐stage/in‐line process with the same composition, thickness, and solar cell stack is made. The one‐stage process is easier to be used in an industrial scale and do not have Cu‐rich transitions. The samples were analyzed using glow discharge optical emission spectroscopy, scanning electron microscopy, X‐ray diffraction, current–voltage‐temperature, capacitance‐voltage, external quantum efficiency, transmission/reflection, and photoluminescence. It was concluded that in spite of differences in the texturing, morphology and Ga gradient, the electrical performance of the two types of samples is quite similar as demonstrated by the similar J–V behavior, quantum spectral response, and the estimated recombination losses. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Dielectric films with anti‐reflective sub‐wavelength structures are applied to thin‐film silicon solar cells to improve the light incoupling at the front surface. It is verified that modification of the refractive index of the incident medium using dielectric films with sub‐wavelength structures is beneficial to reduce the average reflectivity of Si solar cells with an anti‐reflective coating based on optical interference. It is also shown that the sub‐wavelength structure must be combined with a proper light‐trapping texture to enhance the absorption within thin‐film silicon solar cells. The effectiveness of dielectric films with sub‐wavelength structures is demonstrated by an increase of the short‐circuit current density of a microcrystalline silicon cell from 29.1 to 30.4 mA/cm2 in a designated area of 1 cm2. The optical interplay between the dielectric films and the light‐trapping textures is also discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Nanostructured crystalline silicon is promising for thin‐silicon photovoltaic devices because of reduced material usage and wafer quality constraint. This paper presents the optical and photovoltaic characteristics of silicon nanohole (SiNH) arrays fabricated using polystyrene nanosphere lithography and reactive‐ion etching (RIE) techniques for large‐area processes. A post‐RIE damage removal etching is subsequently introduced to mitigate the surface recombination issues and also suppress the surface reflection due to modifications in the nanohole sidewall profile, resulting in a 19% increase in the power conversion efficiency. We show that the damage removal etching treatment can effectively recover the carrier lifetime and dark current–voltage characteristics of SiNH solar cells to resemble the planar counterpart without RIE damages. Furthermore, the reflectance spectra exhibit broadband and omnidirectional anti‐reflective properties, where an AM1.5 G spectrum‐weighted reflectance achieves 4.7% for SiNH arrays. Finally, a three‐dimensional optical modeling has also been established to investigate the dimension and wafer thickness dependence of light absorption. We conclude that the SiNH arrays reveal great potential for efficient light harvesting in thin‐silicon photovoltaics with a 95% material reduction compared to a typical cell thickness of 200 µm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Organic–inorganic lead halide perovskites have shown great future for application in solar cells owing to their exceptional optical and electronic properties. To achieve high‐performance perovskite solar cells, a perovskite light absorbing layer with large grains is desirable in order to minimize grain boundaries and recombination during the operation of the device. Herein, a simple yet efficient approach is developed to synthesize perovskite films consisting of monolithic‐like grains with micrometer size through in situ deposition of octadecylamine functionalized single‐walled carbon nanotubes (ODA‐SWCNTs) onto the surface of the perovskite layer. The ODA‐SWCNTs form a capping layer that controls the evaporation rate of organic solvents in the perovskite film during the postthermal treatment. This favorable morphology in turn dramatically enhances the short‐circuit current density of the perovskite solar cells and almost completely eliminates the hysteresis. A maximum power conversion efficiency of 16.1% is achieved with an ODA‐SWCNT incorporated planar solar cell using (FA0.83MA0.17)0.95Cs0.05Pb(I0.83Br0.17)3 as light absorber. Furthermore, the perovskite solar cells with ODA‐SWCNT demonstrate extraordinary stability with performance retention of 80% after 45 d stability testing under high humidity (60–90%) environment. This work opens up a new avenue for morphology manipulation of perovskite films and enhances the device stability using carbon material.  相似文献   

14.
In this work, a fiber‐based optical powering (or power‐by‐light) system capable of providing more than 1 W is developed. The prototype was used in order to power a shunt regulator for controlling the activation and deactivation of solar panels in satellites. The work involves the manufacture of a light receiver (a GaAs multiple photovoltaic converter (MPC)), a power conditioning block, and a regulator and the implementation and characterization of the whole system. The MPC, with an active area of just 3.1 mm2, was able to supply 1 W at 5 V with an efficiency of 30%. The maximum measured device efficiency was over 40% at an input power (Pin) of 0.5 W. Open circuit voltage over 7 V was measured for Pin over 0.5 W. A system optoelectronic efficiency (including the optical fiber, connectors, and MPC) of 27% was measured at an output power (Pout) of 1 W. At Pout = 0.2 W, the efficiency was as high as 36%. The power conditioning block and the regulator were successfully powered with the system. The maximum supplied power in steady state was 0.2 W, whereas in transient state, it reached 0.44 W. The paper also describes the characterization of the system within the temperature range going from −70 to +100 °C. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Intermediate band solar cell provides novel alternative to multi‐junction solar cell, but its efficiency is significantly degraded when spectral overlap exists between different absorption bands. Here, a scheme using non‐uniform sub‐bandgap state filling together with intermediate band transport is proposed to resolve the spectral overlap issue. On the basis of detailed balance calculation, spectrally decoupled devices using low–high state filling is shown to achieve 52.8% conversion efficiency when 4 eV spectral overlap is present between absorption coefficients of different bands, compared with baseline efficiency equal to 35.1% for conventional half‐filled intermediate band devices. If a base material without intermediate band is added to the two section low–high state filling devices, the efficiency is further increased to 61.5%, which approaches efficiency of 63.2% for intermediate band devices with no spectral overlap and 63.8% for unconstrained triple‐junction tandem cells. The junction thermalization loss associated with proposed new structures is shown to be equal to conventional half‐filled intermediate band devices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A series of solution‐processable and strongly visible‐light absorbing polyplatinynes containing oligothienyl–fluorene ring hybrids were synthesized and characterized. These rigid‐rod organometallic materials are soluble in polar organic solvents and show intense absorptions in the visible spectral region, rendering them excellent candidates for bulk heterojunction polymer solar cells. The photovoltaic behavior depends significantly on the number of thienyl rings along the polymer chain, and some of these polymer solar cells show high power conversion efficiencies (PCEs) of up to 2.9% and a peak external quantum efficiency to 83% under AM1.5 simulated solar illumination. The effect of oligothienyl chain length on improving the polymer solar cell efficiency and on their optical and charge transport properties is elucidated in detail. At the same blend ratio of 1:5, the light‐harvesting capability and PCE increase markedly with increasing number of thienyl rings. The power dependencies of the solar cell parameters (including the short‐circuit current density, open‐circuit voltage, fill‐factor, and PCE) were also examined. The present work opens up an attractive avenue to developing conjugated metallopolymers with broad and strong solar energy absorptions and tunable solar cell efficiency and supports the potential of metalated conjugated polymers for efficient power generation.  相似文献   

17.
To improve and accelerate further developments of III‐V solar cells an accurate and reliable modelling is necessary. In this work we present a comprehensive two‐ dimensional numerical model of single‐junction GaAs solar cells. Using this numerical model we achieved good correlation between measurements and simulations of single‐junction GaAs solar cells with different internal structures. We introduced the concept of optical coupling matrix in the numerical model to account for photon recycling effects. In addition, it is shown that thermionic currents have to be considered at the III‐V hetero‐interfaces. With this numerical model a powerful and flexible tool for solar cell simulation of III‐V compound semiconductor materials is now available. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
A systematic study of the variation in resistivity and lifetime on cell performance, before and after light‐induced degradation (LID), was performed along ∼900‐mm‐long commercially grown B‐ and Ga‐doped Czochralski (Cz) ingots. Manufacturable screen‐printed solar cells were fabricated and analyzed from different locations on the ingots. Despite the large variation in resistivity (0·57–2·5 Ω cm) and lifetime (100–1000 µ s) in the Ga‐doped Cz ingot, the efficiency variation was found to be ≤ 0·5% with an average efficiency of ∼17·1%. No LID was observed in these cells. In contrast to the Ga‐doped ingot, the B‐doped ingot showed a relatively tight resistivity range (0·87–1·22 Ω cm), resulting in smaller spread in lifetime (60–400 µ s) and efficiency (16·5–16·7%) along the ingot. However, the LID reduced the efficiency of these B‐doped cells by about 1·1% absolute. Additionally, the use of thinner substrate and higher resistivity (4·3 Ω cm) B‐doped Cz was found to reduce the LID significantly, resulting in an efficiency reduction of 0·5–0·6%, as opposed to >1·0% in ∼1 Ω cm ∼17% efficient screen‐printed cells. As a result, Ga‐doped Cz cells gave 1·5 and 0·7% higher stabilized efficiency relative to 1 and 4·3 Ω cm B‐doped Cz Si cells, respectively. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
This paper describes the overall design and experimental results obtained with the PV‐FIBRE concentrator system (CPV). This system uses a parabolic dish to collect and concentrate the sunlight which is then further guided by a transparent rod and finally by individual short fibres. Eventually, the individual fibres are connected to single cells which are located indoors. Dual‐junction III‐V‐based solar cells with an efficiency of 30% and operating at 1000× are applied in the PV‐FIBRE system. This new system approach allows a suitable optical and electrical interconnection in order to reduce the losses and the indoor operation of the cell receiver. All elements of the CPV system (collector, tracker, transmission rod, cells, fibre bundles, and cooling circuit) have been manufactured according to main design requirements and have been evaluated separately. Finally, the PV‐FIBRE CPV system has been installed in Madrid and tested under real operation conditions. The system has demonstrated an optical efficiency of 62% is feasible, providing homogeneous illumination to the cells. Therefore, this concept can lead to overall efficiencies exceeding 20% when combined with MJ solar cells. In this paper we report on the main achievements, identified problems as well as lessons learned and future research lines to improve the system performance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Silicon represents an interesting material to fabricate low‐cost and relatively simple and high‐efficient solar cells in the low and medium concentration range. In this paper, we discuss a novel cell scheme conceived for concentrating photovoltaic, named emitter wrap through with deep grooved base (EWT‐DGB), and compare it with the simpler passivated emitter solar cell. Both cells have been fabricated by means of a complementary metal–oxide–semiconductor‐compatible process in our laboratory. The experimental characterization of both cells is reported in the range 1–200 suns in terms of conversion efficiency, open circuit voltage, short circuit current density and fill factor. In particular, for the EWT‐DGB solar cells, we obtain an encouraging 21.4% maximum conversion efficiency at 44 suns. By using a calibrated finite‐element numerical electro‐optical simulation tool, validated by a comparison with experimental data, we study the potentials of the two architectures for concentrated light conditions considering possible realistic improvements with respect to the fabricated devices. We compare the solar cell figures of merit with those of the state‐of‐the‐art silicon back‐contact back‐junction solar cell holding the conversion efficiency record for concentrator photovoltaic silicon. Simulation results predict a 24.8% efficiency at 50 suns for the EWT‐DGB cell and up to 23.9% at 100 suns for the passivated emitter solar cell, thus confirming the good potential of the proposed architectures for low to medium light concentration. Finally, simulations are exploited to provide additional analysis of the EWT‐DGB scheme under concentrated light. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号