首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Mitochondrial membrane potential regulation through the mitochondrial permeability transition pore (mPTP) is reportedly involved in the ischemic postconditioning (PostC) phenomenon. Melatonin is an endogenous hormone that regulates circadian rhythms. Its neuroprotective effects via mitochondrial melatonin receptors (MTs) have recently attracted attention. However, details of the neuroprotective mechanisms associated with PostC have not been clarified. Using hippocampal CA1 pyramidal cells from C57BL mice, we studied the involvement of MTs and the mPTP in melatonin-induced PostC mechanisms similar to those of ischemic PostC. We measured changes in spontaneous excitatory postsynaptic currents (sEPSCs), intracellular calcium concentration, mitochondrial membrane potential, and N-methyl-D-aspartate receptor (NMDAR) currents after ischemic challenge, using the whole-cell patch-clamp technique. Melatonin significantly suppressed increases in sEPSCs and intracellular calcium concentrations. The NMDAR currents were significantly suppressed by melatonin and the MT agonist, ramelteon. However, this suppressive effect was abolished by the mPTP inhibitor, cyclosporine A, and the MT antagonist, luzindole. Furthermore, both melatonin and ramelteon potentiated depolarization of mitochondrial membrane potentials, and luzindole suppressed depolarization of mitochondrial membrane potentials. This study suggests that melatonin-induced PostC via MTs suppressed the NMDAR that was induced by partial depolarization of mitochondrial membrane potential by opening the mPTP, reducing excessive release of glutamate and inducing neuroprotection against ischemia-reperfusion injury.  相似文献   

2.
Acquired resistance to drugs commonly used for lymphoma treatment poses a significant barrier to improving lymphoma patient survival. Previous work with a lymphoma tissue culture model indicates that selection for resistance to oxidative stress confers resistance to chemotherapy-induced apoptosis. This suggests that adaptation to chronic oxidative stress can contribute to chemoresistance seen in lymphoma patients. Oxidative stress-resistant WEHI7.2 cell variants in a lymphoma tissue culture model exhibit a range of apoptosis sensitivities. We exploited this phenotype to test for mitochondrial changes affecting sensitivity to apoptosis in cells made resistant to oxidative stress. We identified impaired release of cytochrome c, and the intermembrane proteins adenylate kinase 2 and Smac/DIABLO, indicating inhibition of the pathway leading to permeabilization of the outer mitochondrial membrane. Blunting of a glucocorticoid-induced signal and intrinsic mitochondrial resistance to cytochrome c release contributed to both points of resistance. The level of Bcl-2 family members or a difference in Bim induction were not contributing factors. The extent of cardiolipin oxidation following dexamethasone treatment, however, did correlate with apoptosis resistance. The differences found in the variants were all proportionate to the degree of resistance to glucocorticoid treatment. We conclude that tolerance to oxidative stress leads to mitochondrial changes that confer resistance to apoptosis.  相似文献   

3.
Severe myocardial dysfunction and tissue damage resulting from ischemia/reperfusion (I/R) is a common clinical scenario in patients with certain types of heart diseases and therapies such as thrombolysis, percutaneous coronary intervention, coronary artery bypass grafting, and cardiac transplantation. The underlining mechanism of endogenous cardiac protection after I/R injury has been a focus of current research. Growing evidences suggests that soluble receptor for advanced glycation end-products (sRAGE) has a cardioprotective effect; however, its role in I/R injury remains unclear. We hypothesized that exogenous administration of sRAGE during hypoxia/reoxygenation (H/R) induces cardioprotection by inhibiting cardiomyocyte apoptosis via multiple signals, involving mitochondrial membrane potential (MMP), the mitochondrial permeability transition pore (mPTP), mitochondrial cytochrome c, caspase-3, Bcl-2 and Bax. Neonatal rat cardiomyocytes underwent hypoxia for 3-h followed by 2-h reoxygenation or were treated with sRAGE for 10 min before H/R. Compared with H/R alone, sRAGE pretreatment reduced H/R-induced cardiomyocyte apoptosis from 27.9% ± 5.9% to 9.4% ± 0.7% (p < 0.05). In addition, sRAGE treatment significantly inhibited H/R-induced mitochondrial depolarization and mPTP opening, reduced mitochondrial cytochrome c leakage, caspase-3 and caspase-9 activity, and decreased the ratio of Bax to Bcl-2. Therefore, we conclude that the exogenous administration of sRAGE during H/R is involved in cardioprotection by inhibiting apoptosis via the mitochondrial pathway, which, if further confirmed in vivo, may have important clinical implications during H/R.  相似文献   

4.
Cerebral ischemia-reperfusion injury involves multiple independently fatal terminal pathways in the mitochondria. These pathways include the reactive oxygen species (ROS) generation caused by changes in mitochondrial membrane potential and calcium overload, resulting in apoptosis via cytochrome c (Cyt c) release. In addition, numerous microRNAs are associated with the overall process. In this review, we first briefly summarize the mitochondrial changes in cerebral ischemia-reperfusion and then describe the possible molecular mechanism of miRNA-regulated mitochondrial function, which likely includes oxidative stress and energy metabolism, as well as apoptosis. On the basis of the preceding analysis, we conclude that studies of microRNAs that regulate mitochondrial function will expedite the development of treatments for cerebral ischemia-reperfusion injury.  相似文献   

5.
This study was designed to investigate the regulatory role of l-cystathionine in human macrophage apoptosis induced by oxidized low density lipoprotein (ox-LDL) and its possible mechanisms. THP-1 cells were induced with phorbol 12-myristate 13-acetate (PMA) and differentiated into macrophages. Macrophages were incubated with ox-LDL after pretreatment with l-cystathionine. Superoxide anion, apoptosis, mitochondrial membrane potential, and mitochondrial permeability transition pore (MPTP) opening were examined. Caspase-9 activities and expression of cleaved caspase-3 were measured. The results showed that compared with control group, ox-LDL treatment significantly promoted superoxide anion generation, release of cytochrome c (cytc) from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and cell apoptosis, in addition to reduced mitochondrial membrane potential as well as increased MPTP opening. However, 0.3 and 1.0 mmol/L l-cystathionine significantly reduced superoxide anion generation, increased mitochondrial membrane potential, and markedly decreased MPTP opening in ox-LDL + l-cystathionine macrophages. Moreover, compared to ox-LDL treated-cells, release of cytc from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and apoptosis levels in l-cystathionine pretreated cells were profoundly attenuated. Taken together, our results suggested that l-cystathionine could antagonize mitochondria-mediated human macrophage apoptosis induced by ox-LDL via inhibition of cytc release and caspase activation.  相似文献   

6.
Mitochondria are the major source of intercellular bioenergy in the form of ATP. They are necessary for cell survival and play many essential roles such as maintaining calcium homeostasis, body temperature, regulation of metabolism and apoptosis. Mitochondrial dysfunction has been observed in variety of diseases such as cardiovascular disease, aging, type 2 diabetes, cancer and degenerative brain disease. In other words, the interpretation and regulation of mitochondrial signals has the potential to be applied as a treatment for various diseases caused by mitochondrial disorders. In recent years, mitochondrial transplantation has increasingly been a topic of interest as an innovative strategy for the treatment of mitochondrial diseases by augmentation and replacement of mitochondria. In this review, we focus on diseases that are associated with mitochondrial dysfunction and highlight studies related to the rescue of tissue-specific mitochondrial disorders. We firmly believe that mitochondrial transplantation is an optimistic therapeutic approach in finding a potentially valuable treatment for a variety of mitochondrial diseases.  相似文献   

7.
Beyond their fundamental role in energy metabolism, mitochondria perform a great variety of other important cellular functions. However, the interplay among these various roles of mitochondria is still poorly understood, and the underlying mechanisms can be related to system level properties. Importantly, mitochondria localized in different regions of a cell may display different morphology, dissimilar biochemical properties, or may differently interact with other intracellular structures. Recent advances in live imaging techniques have also revealed a functional heterogeneity of mitochondria with respect to mitochondrial redox state, membrane potential, respiratory activity, uncoupling proteins, mitochondrial ROS and calcium. An important and still unresolved question is how the heterogeneity of mitochondrial function and the regional specializations of mitochondria are mechanistically realized in the cell and to what extent this could be dependent on environmental aspects. Distinct mitochondrial subsets may also exhibit different responses to substrates and inhibitors and may vary in their sensitivity to pathology, resistance to apoptosis, oxidative stress, thus also demonstrating heterogeneous behavior. All these observations strongly suggest that the intracellular position, organization and the specific surroundings of mitochondria within the cell define their functional features, while also implying that different mitochondrial subpopulations, clusters or even single mitochondrion may execute diverse processes in a cell. The heterogeneity of mitochondrial function demonstrates an additional level of mitochondrial complexity and is a new, challenging area in mitochondrial research that potentially leads to the integration of mitochondrial bioenergetics and cell physiology with various physiological and pathophysiological implications.  相似文献   

8.
The authors investigated the regulatory effects of sulfur dioxide (SO2) on myocardial injury induced by isopropylarterenol (ISO) hydrochloride and its mechanisms. Wistar rats were divided into four groups: control group, ISO group, ISO plus SO2 group, and SO2 only group. Cardiac function was measured and cardiomyocyte apoptosis was detected. Bcl-2, bax and cytochrome c (cytc) expressions, and caspase-9 and caspase-3 activities in the left ventricular tissues were examined in the rats. The opening status of myocardial mitochondrial permeability transition pore (MPTP) and membrane potential were analyzed. The results showed that ISO-treated rats developed heart dysfunction and cardiac injury. Furthermore, cardiomyocyte apoptosis in the left ventricular tissues was augmented, left ventricular tissue bcl-2 expression was down-regulated, bax expression was up-regulated, mitochondrial membrane potential was significantly reduced, MPTP opened, cytc release from mitochondrion into cytoplasm was significantly increased, and both caspase-9 and caspase-3 activities were increased. Administration of an SO2 donor, however, markedly improved heart function and relieved myocardial injury of the ISO-treated rats; it lessened cardiomyocyte apoptosis, up-regulated myocardial bcl-2, down-regulated bax expression, stimulated mitochondrial membrane potential, closed MPTP, and reduced cytc release as well as caspase-9 and caspase-3 activities in the left ventricular tissue. Hence, SO2 attenuated myocardial injury in association with the inhibition of apoptosis in myocardial tissues, and the bcl-2/cytc/caspase-9/caspase-3 pathway was possibly involved in this process.  相似文献   

9.
Transient potential receptor vanilloid 1 (TRPV1) channels, which are expressed on sensory neurons, elicit cardioprotective effects during ischemia reperfusion injury by stimulating the release of neuropeptides, namely calcitonin gene-related peptide (CGRP) and substance P (SP). Recent studies show that TRPV1 channels are also expressed on cardiomyocytes and can exacerbate air pollutant-induced apoptosis. However, whether these channels present on cardiomyocytes directly modulate cell death and survival pathways during hypoxia/reoxygenation (H/R) injury remains unclear. In the present study, we investigated the role of TRPV1 in H/R induced apoptosis of H9C2 cardiomyocytes. We demonstrated that TRPV1 was indeed expressed in H9C2 cells, and activated by H/R injury. Although neuropeptide release caused by TRPV1 activation on sensory neurons elicits a cardioprotective effect, we found that capsaicin (CAP; a TRPV1 agonist) treatment of H9C2 cells paradoxically enhanced the level of apoptosis by increasing intracellular calcium and mitochondrial superoxide levels, attenuating mitochondrial membrane potential, and inhibiting mitochondrial biogenesis (measured by the expression of ATP synthase β). In contrast, treatment of cells with capsazepine (CPZ; a TRPV1 antagonist) or TRPV1 siRNA attenuated H/R induced-apoptosis. Furthermore, CAP and CPZ treatment revealed a similar effect on cell viability and mitochondrial superoxide production in primary cardiomyocytes. Finally, using both CGRP8–37 (a CGRP receptor antagonist) and RP67580 (a SP receptor antagonist) to exclude the confounding effects of neuropeptides, we confirmed aforementioned detrimental effects as TRPV1−/− mouse hearts exhibited improved cardiac function during ischemia/reperfusion. In summary, direct activation of TRPV1 in myocytes exacerbates H/R-induced apoptosis, likely through calcium overload and associated mitochondrial dysfunction. Our study provides a novel understanding of the role of myocyte TRPV1 channels in ischemia/reperfusion injury that sharply contrasts with its known extracardiac neuronal effects.  相似文献   

10.
Cytotoxic effects of cannabidiol (CBD) and tamoxifen (TAM) have been observed in several cancer types. We have recently shown that CBD primarily targets mitochondria, inducing a stable mitochondrial permeability transition pore (mPTP) and, consequently, the death of acute lymphoblastic leukemia (T-ALL) cells. Mitochondria have also been documented among cellular targets for the TAM action. In the present study we have demonstrated a synergistic cytotoxic effect of TAM and CBD against T-ALL cells. By measuring the mitochondrial membrane potential (ΔΨm), mitochondrial calcium ([Ca2+]m) and protein-ligand docking analysis we determined that TAM targets cyclophilin D (CypD) to inhibit mPTP formation. This results in a sustained [Ca2+]m overload upon the consequent CBD administration. Thus, TAM acting on CypD sensitizes T-ALL to mitocans such as CBD by altering the mitochondrial Ca2+ homeostasis.  相似文献   

11.
Bovine endometritis is a reproductive disorder that is induced by mucus or purulent inflammation of the uterine mucosa. However, the intracellular control chain during inflammatory injury remains unclear. In the present study, we found that E. coli activated the inflammatory response through the assembly of the NLRP3 inflammasome and activation of the NF-κB p65 subunit in primary bovine endometrial epithelial cells (bEECs). Infection with E. coli also led to an abnormal increase in cytoplasmic calcium and mitochondrial dysfunction. Additionally, live-cell imaging of calcium reporters indicated that the increase in cytosolic calcium mainly was caused by the release of Ca2+ ions stored in the ER and mitochondria, which was independent of extracellular calcium. Cytoplasmic calcium regulates mitochondrial respiratory chain transmission, DNA replication, and biogenesis. Pretreatment with NAC, BAPTA-AM, or 2-APB reduced the expression of IL-1β and IL-18. Moreover, ERS was involved in the regulation of bovine endometritis and cytosolic calcium was an important factor for regulating ERS in E. coli-induced inflammation. Finally, activation of autophagy inhibited the release of IL-1β and IL-18, cytochrome c, ATP, ERS-related proteins, and cytoplasmic calcium. Collectively, our findings demonstrate that autophagy mediated E. coli-induced cellular inflammatory injury by regulating cytoplasmic calcium, mitochondrial dysfunction, and ERS.  相似文献   

12.
Mitochondria are vital to life and provide biological energy for other organelles and cell physiological processes. On the mitochondrial double layer membrane, there are a variety of channels and transporters to transport different metal ions, such as Ca2+, K+, Na+, Mg2+, Zn2+ and Fe2+/Fe3+. Emerging evidence in recent years has shown that the metal ion transport is essential for mitochondrial function and cellular metabolism, including oxidative phosphorylation (OXPHOS), ATP production, mitochondrial integrity, mitochondrial volume, enzyme activity, signal transduction, proliferation and apoptosis. The homeostasis of mitochondrial metal ions plays an important role in maintaining mitochondria and cell functions and regulating multiple diseases. In particular, channels and transporters for transporting mitochondrial metal ions are very critical, which can be used as potential targets to treat neurodegeneration, cardiovascular diseases, cancer, diabetes and other metabolic diseases. This review summarizes the current research on several types of mitochondrial metal ion channels/transporters and their functions in cell metabolism and diseases, providing strong evidence and therapeutic strategies for further insights into related diseases.  相似文献   

13.
The opening of the mitochondrial permeability transition pore (mPTP) has emerged as a pivotal event following traumatic brain injury (TBI). Evidence showing the impact of the translocator protein (TSPO) over mPTP activity has prompted several studies exploring the effect of TSPO ligands, including etifoxine, on the outcome of traumatic brain injury (TBI). Mitochondrial respiration was assessed by respirometry in isolated rat brain mitochondria (RBM) by measurements of oxidative phosphorylation capacity (OXPHOS). The addition of calcium to RBM was used to induce mitochondrial injury and resulted in significant OXPHOS reduction that could be reversed by preincubation of RBM with etifoxine. Sensorimotor and cognitive functions were assessed following controlled cortical impact and compared in vehicle and etifoxine-treated animals. There was no difference between the vehicle and etifoxine groups for sensorimotor functions as assessed by rotarod. In contrast, etifoxine resulted in a significant improvement of cognitive functions expressed by faster recovery in Morris water maze testing. The present findings show a significant neuroprotective effect of etifoxine in TBI through restoration of oxidative phosphorylation capacity associated with improved behavioral and cognitive outcomes. Since etifoxine is a registered drug used in common clinical practice, implementation in a phase II study may represent a reasonable step forward.  相似文献   

14.
Recent studies have shown that melatonin is an important molecule in plant physiology. It seems that the most important is that melatonin effectively eliminates oxidative stress (direct and indirect antioxidant) and switches on different defence strategies (preventive and interventive actions) during environmental stresses. In the presented report, exogenous melatonin potential to protect Nicotiana tabacum L. line Bright Yellow 2 (BY-2) exposed to lead against death was examined. Analyses of cell proliferation and viability, the level of intracellular calcium, changes in mitochondrial membrane potential (ΔΨm) as well as possible translocation of cytochrome c from mitochondria to cytosol and subsequent caspase-like proteolytic activity were conducted. Our results indicate that pretreatment BY-2 with melatonin protected tobacco cells against mitochondrial dysfunction and caspase-like activation caused by lead. The findings suggest the possible role of this indoleamine in the molecular mechanism of mitochondria, safeguarding against potential collapse and cytochrome c release. Thus, it seems that applied melatonin acted as an effective factor, promoting survival and increasing plant tolerance to lead.  相似文献   

15.
Melanoma represents one of the most aggressive and drug resistant skin cancers with poor prognosis in its advanced stages. Despite the increasing number of targeted therapies, novel approaches are needed to counteract both therapeutic resistance and the side effects of classic therapy. Betulinic acid (BA) is a bioactive phytocompound that has been reported to induce apoptosis in several types of cancers including melanomas; however, its effects on mitochondrial bioenergetics are less investigated. The present study performed in A375 human melanoma cells was aimed to characterize the effects of BA on mitochondrial bioenergetics and cellular behavior. BA demonstrated a dose-dependent inhibitory effect in both mitochondrial respiration and glycolysis in A375 melanoma cells and at sub-toxic concentrations (10 μM) induced mitochondrial dysfunction by eliciting a decrease in the mitochondrial membrane potential and changes in mitochondria morphology and localization. In addition, BA triggered a dose-dependent cytotoxic effect characterized by apoptotic features: morphological alterations (nuclear fragmentation, apoptotic bodies) and the upregulation of pro-apoptotic markers mRNA expression (Bax, Bad and Bak). BA represents a viable therapeutic option via a complex modulatory effect on mitochondrial metabolism that might be useful in advanced melanoma or as reliable strategy to counteract resistance to standard therapy.  相似文献   

16.
Chondrosarcoma is a highly malignant cartilage-forming bone tumor that has the capacity to invade locally and cause distant metastasis. Moreover, chondrosarcoma is intrinsically resistant to conventional chemotherapy or radiotherapy. The novel benzofuran derivative, BL-038 (2-amino-3-(2,6-dichlorophenyl)-6-(4-methoxyphenyl)benzofuran-4-yl acetate), has been evaluated for its anticancer effects in human chondrosarcoma cells. BL-038 caused cell apoptosis in two human chondrosarcoma cell lines, JJ012 and SW1353, but not in primary chondrocytes. Treatment of chondrosarcoma with BL-038 also induced reactive oxygen species (ROS) production. Furthermore, BL-038 decreased mitochondrial membrane potential (MMP) and changed mitochondrial-related apoptosis, by downregulating the anti-apoptotic activity members (Bcl-2, Bcl-xL) and upregulating pro-apoptotic members (Bax, Bak) of the B-cell lymphoma 2 (Bcl-2) family of proteins, key regulators of the apoptotic machinery in cells. These results demonstrate that in human chondrosarcoma cells, the apoptotic and cytotoxic effects of BL-038 are mediated by the intrinsic mitochondria-mediated apoptotic pathway, which in turn causes the release of cytochrome c, the activation of caspase-9 and caspase-3, and the cleavage of poly (ADP-ribose) polymerase (PARP), to elicit apoptosis response. Our results show that the benzofuran derivative BL-038 induces apoptosis in chondrosarcoma cells.  相似文献   

17.
The c subunit of the ATP synthase is an inner mitochondrial membrane (IMM) protein. Besides its role as the main component of the rotor of the ATP synthase, c subunit from mammalian mitochondria exhibits ion channel activity. In particular, c subunit may be involved in one of the pathways leading to the formation of the permeability transition pore (PTP) during mitochondrial permeability transition (PT), a phenomenon consisting of the permeabilization of the IMM due to high levels of calcium. Our previous study on the synthetic c subunit showed that high concentrations of calcium induce misfolding into cross-β oligomers that form low-conductance channels in model lipid bilayers of about 400 pS. Here, we studied the effect of cyclophilin D (CypD), a mitochondrial chaperone and major regulator of PTP, on the electrophysiological activity of the c subunit to evaluate its role in the functional properties of c subunit. Our study shows that in presence of CypD, c subunit exhibits a larger conductance, up to 4 nS, that could be related to its potential role in mitochondrial toxicity. Further, our results suggest that CypD is necessary for the formation of c subunit induced PTP but may not be an integral part of the pore.  相似文献   

18.
The objectives of the study were to explore the mechanism of rotenone-induced cell damage and to examine the protective effects of water-soluble Coenzyme Q10 (CoQ10) on the toxic effects of rotenone. Murine hippocampal HT22 cells were cultured with mitochondrial complex I inhibitor rotenone. Water-soluble CoQ10 was added to the culture media 3 h prior to the rotenone incubation. Cell viability was determined by alamar blue, reactive oxygen species (ROS) production by dihydroethidine (DHE) and mitochondrial membrane potential by tetramethyl rhodamine methyl ester (TMRM). Cytochrome c, caspase-9 and apoptosis-inducing factor (AIF) were measured using Western blotting after 24 h rotenone incubation. Rotenone caused more than 50% of cell death, increased ROS production, AIF nuclear translocation and reduction in mitochondrial membrane potential, but failed to cause mitochondrial cytochrome c release and caspase-9 activation. Pretreatment with water-soluble CoQ10 enhanced cell viability, decreased ROS production, maintained mitochondrial membrane potential and prevented AIF nuclear translocation. The results suggest that rotenone activates a mitochondria-initiated, caspase-independent cell death pathway. Water-soluble CoQ10 reduces ROS accumulation, prevents the fall of mitochondrial membrane potential, and inhibits AIF translocation and subsequent cell death.  相似文献   

19.
20.
Changes in mitochondrial membrane permeability are closely associated with mitochondria-mediated apoptosis. Antimicrobial peptides (AMPs), which have been found to enter cells to exert physiological effects, cause damage to the mitochondria. This paper reviews the molecular mechanisms of AMP-mediated apoptosis by changing the permeability of the mitochondrial membrane through three pathways: the outer mitochondrial membrane (OMM), inner mitochondrial membrane (IMM), and mitochondrial permeability transition pore (MPTP). The roles of AMPs in inducing changes in membrane permeability and apoptosis are also discussed. Combined with recent research results, the possible application prospects of AMPs are proposed to provide a theoretical reference for the development of AMPs as therapeutic agents for human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号