首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The dynamic mechanical properties of randomly oriented intimately mixed hybrid composites based on pineapple leaf fibers (PALF) and glass fibers (GF) in unsaturated polyester (PER) matrix were investigated. The PALFs have high‐specific strength and improve the mechanical properties of the PER matrix. In this study, the volume ratio of the two fibers was varied by incorporating small amounts of GF such as PALF/GF, 90/10, 80/20, 70/30, and 50/50, keeping the total fiber loading constant at 40 wt%. The dynamic modulus of the compositeswas found to increase on GF addition. The intimately mixed (IM) hybrid composites with PALF/GF, 80/20 (0.2 Vf GF) showed highest E′ values and least damping. Interestingly, the impact strength of the composites was minimum at this volume ratio. The composites with 0.46 Vf GF or PALF/GF (50/50) showed maximum damping behavior and highest impact strength. The results were compared with hybrid composites of different layering patterns such as GPG (GF skin and PALF core) and PGP (PALF skin and GF core). IM and GPG hybrid composites are found more effective than PGP. The activation energy values for the relaxation processes in different composites were calculated. The overall results showed that hybridization with GF enhanced the performance properties. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

2.
The tensile and impact performance of intimately mixed (IM) hybrid composites based on glass fiber (GF) and pineapple leaf fiber (PALF) was investigated. The composite was fabricated at constant volume fraction of fiber 0.3 Vf (fiber 0.3 and matrix 0.7). Keeping the volume fraction of matrix a constant (0.7 Vf), we have varied the PALF/GF ratio from 0 to 1. Incorporation of 0.1 volume fraction of GF increases the tensile strength of the hybrid composite by about 28%. The tensile strength showed a further increase when the volume fraction is changed to 0.7 and 0.9 Vf of GF. Intimately mixed hybrid composites exhibited higher impact strength than the individual fiber composites; the composite of PALF/GF ratio 70:30 showed maximum impact strength of 1203 J/m. A positive hybrid effect is observed for impact properties. Scanning electron micrographs of the fractured surfaces were examined to understand the fiber‐matrix adhesion. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

3.
The water sorption characteristics of banana fiber–reinforced polyester composites were studied by immersion in distilled water at 28, 50, 70, and 90°C. The effect of hybridization with glass fiber and the chemical modification of the fiber on the water absorption properties of the prepared composites were also evaluated. In the case of hybrid composites, water uptake decreased with increase of glass fiber content. In the case of chemically modified fiber composites, water uptake was found to be dependent on the chemical treatment done on the fiber surface. Weight change profiles of the composites at higher temperature indicated that the diffusion is close to Fickian. The water absorption showed a multistage mechanism in all cases at lower temperatures. Chemical modification was found to affect the water uptake of the composite. Among the treated composites the lowest water uptake was observed for composites treated with silane A1100. Finally, parameters like diffusion, sorption, and permeability coefficients were determined. It was observed that equilibrium water uptake is dependent on the nature of the composite and temperature. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3856–3865, 2004  相似文献   

4.
The incorporation of carbon nanofiber (CNF) into glass fiber (GF) composites is a potential route to extend polymer composite service‐life and enhance mechanical properties. Under nonstatic conditions, only limited information concerning water uptake and contaminant release properties of nanocomposite materials is currently available. Polyester composites containing GF and oxidized CNF were immersed in water for 30 days under nominal pressure at 23 °C, below the polymer's glass‐transition temperature. Water was analyzed and changed every three days to simulate water chemistry regeneration similar to exposures in flowing systems. Composites with oxidized CNF had greater water sorption capacity and leaching rates than CNF‐free composites. The total mass of organic contaminant released correlated with the amount of water sorbed by each composite (r2 = 0.91), although CNF dispersion was found to vary greatly within composites. The greatest and least contaminant release rates were found for the polyester‐CNF and the polyester‐GF composites, respectively. While volatile aromatic resin solvents and stabilizer compounds were detected, their concentrations declined over the 30 day exposure period. We hypothesize that the hydrophilic nature of the oxidized CNF increased the water sorption capacity of the polyester composites. Additional studies are warranted that examine the impact of this phenomenon on composite mechanical and long‐term durability properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43724.  相似文献   

5.
In the recent years, lignocellulosic fibers that originate from a renewable source have been found to provide good reinforcement in polymer matrices. Among the natural fibers, pineapple leaf fiber (PALF) exhibits excellent mechanical properties, besides possessing low density, high stiffness, and low cost. The dynamic mechanical properties, storage modulus (E′), and loss tangent of PALF‐reinforced polyester (PER) composites were evaluated at three frequencies 0.1, 1, and 10 Hz and temperatures ranging from 30 to 200°C. Addition of PALF of 30 mm length (aspect ratio 600) was found to increase the storage modulus leading to a maximum value at 40 wt%. The glass transition temperature (Tg) of the composite of 40 wt% showed a positive shift indicating high polymer/fiber interaction. A new relaxation is observed at 40 wt% showing the presence of a strong interphase at all aspect ratios. SEM photographs of fracture surfaces of composites confirm the results obtained from static and dynamic mechanical analysis. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

6.
This experimental study evaluated the water absorption characteristics of pineapple leaf fiber (PALF)–polyester composites of different fiber content. The degree of water absorption was found to increase with fiber loading. The mechanism of diffusion was analyzed and the effect of fiber loading on the sorption kinetics was studied. The diffusion coefficient was calculated and found to increase with fiber content. Studies were also made to correlate water absorption with the cross‐sectional areas of the specimens. The effects of ageing on the tensile properties and dimensional stability of PALF polyester composites were studied under two different ageing conditions. Ageing studies showed a decrease in tensile strength of the composites. The composite specimens subjected to thermal ageing showed only a slight deterioration in strength. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 503–510, 2004  相似文献   

7.
Reactions of unsaturated polyester resin and 4,4′ diphenyl methane diisocyanate were carried out at different NCO/OH ratios in presence of catalysts to form the hybrid polymer networks. Chain extender (1,4 butanediol) added in the hybrid network (NCO/OH ratio: 0.76) was optimized at a level of ~ 3 wt % only of the polyester resin. The curing of these networks was studied by a rigid body pendulum type (RPT) method in terms of reduced damping ratio and increased frequency. Lack of multiple glass transition temperatures, sharp Tan delta peak, and particulate composite type morphology clearly demonstrated the formation of phase mixed domains in the hybrid networks. The storage modulus and loss modulus master curves obtained by dynamic mechanical analysis indicate that hybrid polymer networks retained higher modulus at lower and intermediate frequencies over the polyester resin showing their superior time‐dependent response. Efficacy of these hybrid network resins was examined as matrices in the jute composites and compared with those of polyester resin and unsaturated polyester–polyurethane interpenetrating network matrices. It is found that the hybrid polymer network matrix composites exhibited superior physicomechanical properties under both dry and boiling water age test. Fractographic evidences such as fiber–matrix adhesion, hackle markings, and fiber breakage also supported their superior behavior over other composite matrices. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Pineapple leaf fiber (PALF) which is rich in cellulose, relatively inexpensive, and abundantly available has the potential for polymer reinforcement. The present study investigated the tensile, flexural, and impact behavior of PALF-reinforced polyester composites as a function of fiber loading, fiber length, and fiber surface modification. The tensile strength and Young's modulus of the composites were found to increase with fiber content in accordance with the rule of mixtures. The elongation at break of the composites exhibits an increase by the introduction of fiber. The mechanical properties are optimum at a fiber length of 30 mm. The flexural stiffness and flexural strength of the composites with a 30% fiber weight fraction are 2.76 GPa and 80.2 MPa, respectively. The specific flexural stiffness of the composite is about 2.3 times greater than that of neat polyester resin. The work of fracture (impact strength) of the composite with 30% fiber content was found to be 24 kJ m−2. Significant improvement in the tensile strength was observed for composites with silane A172-treated fibers. Scanning electron microscopic studies were carried out to understand the fiber-matrix adhesion, fiber breakage, and failure topography. The PALF polyester composites possess superior mechanical properties compared to other cellulose-based natural fiber composites. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 1739–1748, 1997  相似文献   

9.
《Polymer Composites》2017,38(10):2212-2220
Sandwich composites based on coir fiber nonwoven mats as core material were manufactured by Vacuum Assisted Resin Transfer Molding technique. Mechanical and physical properties of produced coir/polyester and coir‐glass/polyester composites were assessed. Samples were evaluated according to their reinforcement contents, resin contents, areal density, and thickness. Tests on physical properties revealed that coir‐glass/polyester sandwich structure has the lowest values of thickness swelling, water absorption and moisture contents compared with coir/polyester composite. Mechanical tests such as tensile strength, open‐hole tensile strength, and flexural strength were also performed on all samples. Coir‐glass/polyester sandwich structure showed significant increase in tensile strength of 70 MPa compared with 8 MPa of coir/polyester composite. Introducing two skins of fiber glass woven roving to coir/polyester increased its flexural strength from 31.8 to 131.8 MPa for coir‐glass/polyester. POLYM. COMPOS., 38:2212–2220, 2017. © 2015 Society of Plastics Engineers  相似文献   

10.
Hybridization of Banana fibers with glass fibers has been found to reduce the water absorption behavior of the composites in an earlier work by us. Banana fibers were hybridized with glass and different layering patterns were followed in the preparation of the composites. The effect of the various layering patterns on the water absorption of the composites was studied. It was found that water diffusion occurs in the composite depending on the layering pattern as well as the temperature. In all the experiments, it has been found that composites with an intimate mixture of glass and banana show the maximum water uptake except for temperature of 90°C. At 90°C the maximum water uptake is found to be for composites where there is one layer of banana and another layer of glass. The water uptake follows the same trend as that in all other temperatures till a time span of 4900 min is reached. The kinetics of diffusion was found to be Fickian in nature. The various thermodynamic parameters like sorption coefficient, diffusion coefficient. Enthalpy change, entropy change, and activation energy of the various composites were calculated. From all the calculations it has been concluded that layering pattern is an important parameter which controls the water absorption of the composites. The layering pattern Cg‐b‐g was found to have the lowest water uptake. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

11.
Abstract

Unsaturated polyester (UP) reinforced with self-synthesised reactive thermotropic liquid crystalline polymer (TLCP)–methacryloyl copolymer (LCMC) and glass fibre (GF), the hybrid composites of UP/GF/LCMC were prepared by moulding technology. The dynamic mechanical analysis indicated that storage modulus and glass transition temperature (T g) of hybrid composites increased significantly because of the addition of LCMC. The effect of LCMC content on the mechanical properties of LCMC/UP/GF hybrid composites such as impact strength, specific strength and modulus and load–displacement relationship were also investigated through static mechanical tests. The mechanical properties of hybrid composites increased significantly because of the addition of LCMC. The crystal behaviour analysis of LCMC/UP blend was investigated by X-ray diffraction and polarising optical microscopy. The results showed that the crystal phase and texture structure of LCMC still existed in the blends after blending with UP. The morphology of fracture surfaces of hybrid composites containing different TLCP contents was observed by scanning electron microscopy. The present paper discussed the mechanism for the improvement of dynamic mechanical and mechanical properties.  相似文献   

12.
This article is focused to elucidate the critical influence of diffusion temperature on the water uptake and subsequent degradation behavior of multi‐walled carbon nanotube embedded glass fiber/epoxy (MWCNT‐GE) composite. Presence of MWCNT in the glass fiber/epoxy (GE) composite significantly suppressed its water absorption propensity at lower aging temperature (25 °C). However, MWCNT reinforcement in GE composite adversely affected its high temperature water resistance due to generation of unfavorable thermal and hygroscopic stresses at the MWCNT/polymer interfaces. Effect of MWCNT and water diffusion temperature on the glass transition temperature and chemical bonding characteristics of GE composite have been verified by differential scanning calorimetry and Fourier transformed infrared spectroscopy. Flexural testing of the water saturated samples revealed that diffused water exerts more detrimental effect on mechanical performance of MWCNT‐GE composite than that of control GE composite. The extent of recovery in mechanical performance of the composites has also been evaluated after complete desorption of the water saturated samples. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45987.  相似文献   

13.
The overall mechanical performance of glass–carbon hybrid fibers reinforced epoxy composites depends heavily upon fiber–matrix interfacial properties and the service temperatures. Fiber‐bundle pull‐out tests of glass (GF) and/or carbon fiber (CF) reinforced epoxy composites were carried out at room and elevated temperatures. Graphene nanoplatelets were added in the interfacial region to investigate their influence on the interfacial shear strength (IFSS). Results show that IFSS of specimens with fiber‐bundle number ratio of GF:CF = 1:2 is the largest among the hybrid composites, and a positive hybridization effect is found at elevated temperatures. IFSS of all the specimens decreases with the increasing of test temperatures, while the toughness shows a contrary tendency. As verified by scanning electron microscopy observations, graphene nanoplatelets on fiber surface could enhance the IFSS of pure glass/carbon and hybrid fibers reinforced epoxy composites at higher temperatures significantly. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46263.  相似文献   

14.
以乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯三元共聚物(PTW)为相容剂,采用平行同向双螺杆挤出机共混挤出制备了无碱玻璃纤维(GF)增强热塑性聚氨酯弹性体(TPU)复合材料。研究了PTW对GF增强聚酯型TPU和聚醚型TPU复合材料力学性能的影响及其微观形貌特征。结果表明:PTW是GF和TPU的有效相容剂;添加6%PTW的增强TPU复合材料的各项性能较佳;GF含量在20%40%之间时增强效果最为明显;PTW与聚酯型TPU的相容性好于聚醚型TPU;电镜照片显示,复合材料中的GF与基体树脂具有较强的界面作用。  相似文献   

15.
Three types of surface modifiers, N‐β‐aminoethyl‐γ‐aminopropyltrimethoxysilane coupling agent (SGS), a mixture of silane and rare earth elements (SGS/RES), and rare earth elements surface modifier (RES), were used to treat the glass fiber surface. Tensile tests of glass fiber–reinforced polytetrafluoroethylene (GF/PTFE) composites with different surface treatment conditions, surface modifiers, and glass fiber content were carried out. Finally, the fracture surface morphologies of GF/PTFE composites were investigated using scanning electron microscopy. Experimental results show that the tensile properties of the treated GF/PTFE composite increased compared with those of the untreated one. RES is superior to SGS/RES and SGS modifiers in promoting interfacial adhesion between the glass fiber and PTFE because of the effects of rare earth elements on the compatibility. Meanwhile, the optimum contents of rare earth elements for the improvement of the tensile properties of GF/PTFE composite were obtained for RES and SGS/RES modifiers. The interfacial adhesion of the GF/PTFE composites treated with RES or SGS/RES modifiers was mainly controlled by the contents of rare earth elements. The tensile properties of the GF/PTFE composites improved considerably when the content of rare earth elements in surface modifiers was 0.2–0.4 wt %, and the optimum tensile performance of GF/PTFE composites was obtained at 0.3 wt % RE content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1667–1672, 2002  相似文献   

16.
The incorporation of natural fibers with polymer matrix composites (PMCs) has increasing applications in many fields of engineering due to the growing concerns regarding the environmental impact and energy crisis. The objective of this work is to examine the effect of fiber orientation and fiber content on properties of sisal‐jute‐glass fiber‐reinforced polyester composites. In this experimental study, sisal‐jute‐glass fiber‐reinforced polyester composites are prepared with fiber orientations of 0° and 90° and fiber volume of sisal‐jute‐glass fibers are in the ratio of 40:0:60, 0:40:60, and 20:20:60 respectively, and the experiments were conducted. The results indicated that the hybrid composites had shown better performance and the fiber orientation and fiber content play major role in strength and water absorption properties. The morphological properties, internal structure, cracks, and fiber pull out of the fractured specimen during testing are also investigated by using scanning electron microscopy (SEM) analysis. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42968.  相似文献   

17.
承载/声隐身混杂纤维复合材料的研究   总被引:2,自引:0,他引:2  
通过试验获取了碳纤维(CF)、凯夫拉纤维(KF)、玻璃纤维(GF)、超高分子量聚乙烯纤维(UHMPEF)复合材料的力学性能和声学性能参数,在此基础上分别利用等效刚度法和传递矩阵法,对CF/UHMPEF、CF/KF、CF/GF混杂纤维复合材料的拉伸刚度、声反射系数和声透射系数进行计算。结果表明,材料的刚度和强度基本相同的条件下CF/UHMPEF复合材料声压反射系数最小,其次是CF/KF复合材料,再次是CF/GF复合材料。10kHz频率范围内3种混杂材料的声透射系数都达到95%以上。  相似文献   

18.
The study investigates the thermo-mechanical properties of isotactic polypropylene (iPP) hybrid composites in reference to various amounts of particle- and fiber-shaped inorganic fillers. Three grades of hybrid composites were prepared as a function of filler amount: 5, 10, and 20 wt% and different ratios of glass fiber (GF) and calcium carbonate (CaCO3). The main objective is to describe the relationship between the hybridization efficiency and mechanical performance of polypropylene-based composites. The analysis of the thermo-mechanical properties of the composites shows that both the total amount of the filler and the ratio of GF and CaCO3 clearly influence the properties of the composites. Hybrid composites with the highest amount of the GF display improved thermo-mechanical stability. The presence of well-dispersed CaCO3 in the composites was found to improve elongation at break and Vicat softening temperature values. Even though it is glass fiber, which shows higher filler effectiveness and visibly reinforces the composite samples, causing an increase in tensile strength or reinforcing efficiency, replacing up to 50% of this filler with calcium carbonate does not result in a considerable deterioration of the properties of the material.  相似文献   

19.
Epoxidized soybean oil was incorporated as a co‐matrix into an epoxy resin, and the hybrid resin system was used for preparing glass fiber‐reinforced composites. Effect of addition of poly(vinyl chloride) plastisol and selected particulate fillers (fly ash and wood flour) to epoxy/epoxidized soybean oil matrix on mechanical and water uptake properties of glass fiber‐reinforced composites were studied. Fourier transform infrared spectroscopy was used to reveal the curing state of these composites. It was observed that tensile strengths and moduli decreased with the inclusion of all additives. However, addition of poly(vinyl chloride) plastisol, fly ash, and wood flour particulate fillers showed significant increase in impact strengths compared with neat epoxy composite in a synergistic manner. Water uptake results of the composites were found to be in good agreement with ? OH peak intensities obtained from Fourier transform infrared spectroscopy. Finally, acousto‐ultrasonic nondestructive technique was successfully used to assess damage states and to relate stress wave factors with tensile strength properties of modified epoxy‐based glass fiber composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40586.  相似文献   

20.
Thermoplastic natural rubber (TPNR) hybrid composite with short glass fiber (GF) and empty fruit bunch (EFB) fiber were prepared via the melt blending method using an internal mixer type Thermo Haake 600p. The TPNR were prepared from natural rubber (NR), liquid natural rubber (LNR) and polypropylene (PP) thermoplastic, with a ratio of 20:10:70. The hybrid composites were prepared at various ratios of GF/EFB with 20% volume fraction. Premixture was performed before the material was discharged into the machine. The study also focused on the effect of fiber (glass and EFB) treatment using silane and maleic anhydride grafted polypropylene (MAgPP) as a coupling agent. In general, composite that contains 10% EFB/10% glass fiber gave an optimum tensile and impact strength for treated and untreated hybrid composites. Tensile properties increase with addition of a coupling agent because of the existence of adherence as shown in the scanning electron microscopy (SEM) micrograph. Further addition of EFB exceeding 10% reduced the Young's modulus and impact strength. However, the hardness increases with the addition of EFB fiber for the untreated composite and decreases for the treated composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号