首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(vinylidene chloride‐co‐vinyl chloride) (P(VDC‐co‐VC) membranes were prepared by non‐solvent‐induced phase separation and adjusted by adding water‐soluble polyethylene glycol (PEG) and water‐insoluble silicon dioxide (SiO2) hydrophilic nanoparticles. The structure of pores and antifouling performance were investigated to illustrate the effect of these nanoparticles. The cross section of the P(VDC‐co‐VC) membrane exhibited more macropores and the typical finger‐like pores turned into more vertically interconnected ones with increasing PEG content, while the number and size of finger‐like pores became less with increasing SiO2 content. Considering the filtration and antifouling experiments, the presence of hydrophilic PEG and SiO2 nanoparticles in the P(VDC‐co‐VC) polymer matrix improved the membrane performance in terms of high flux, high BSA rejection ratio, and fouling resistance.  相似文献   

2.
A novel and simple but practical method for the preparation of modified poly(ether sulfone) (PES) membranes was provided by the in situ crosslinked copolymerization of sulfobetaine methacrylate (SBMA) and sodium p‐styrene sulfonate (NaSS) in PES solution followed by a phase‐separation technique. Then, semi‐interpenetrating network membranes modified by the crosslinked copolymers of poly(sulfobetaine methacrylate‐co‐sodium p‐styrene sulfonate) [P(SBMA‐co‐NaSS)] were prepared. The SBMA‐containing copolymer‐modified membranes showed improved protein antifouling properties with flux recovery ratios above 90%. Furthermore, the anticoagulant properties of the NaSS‐containing copolymer‐modified membranes were obviously enhanced; their activated partial thromboplastin time could be prolonged to about 115 s. Thus, the P(SBMA‐co‐NaSS) zwitterionic copolymer‐modified membranes showed improved antifouling properties and blood compatibility and will provide wide choices for their specific applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41585.  相似文献   

3.
In this work, biocompatible hydrogel matrices for wound‐dressing materials and controlled drug‐release systems were prepared from poly[hydroxyethyl methacrylate‐co‐poly(ethylene glycol)–methacrylate] [p(HEMA‐co‐PEG–MA] films via UV‐initiated photopolymerization. The characterization of the hydrogels was conducted with swelling experiments, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis (differential scanning calorimetry), and contact‐angle studies. The water absorbency of the hydrogel films significantly changed with the change of the medium pH from 4.0 to 7.4. The thermal stability of the copolymer was lowered by an increase in the ratio of poly(ethylene glycol) (PEG) to methacrylate (MA) in the film structure. Contact‐angle measurements on the surface of the p(HEMA‐co‐PEG–MA) films demonstrated that the copolymer gave rise to a significant hydrophilic surface in comparison with the homopolymer of 2‐hydroxyethyl methacrylate (HEMA). The blood protein adsorption was significantly reduced on the surface of the copolymer hydrogels in comparison with the control homopolymer of HEMA. Model antibiotic (i.e., minocycline) release experiments were performed in physiological buffer saline solutions with a continuous flow release system. The amount of minocycline release was shown to be dependent on the HEMA/PEG–MA ratio. The hydrogels have good antifouling properties and therefore are suitable candidates for wound dressing and other tissue engineering applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
The synthesis of two low molecular weight linear unsaturated oligoester precursors, poly(propylene fumarate‐co‐sebacate) (PPFS) and poly(ethylene fumarate‐co‐sebacate) (PEFS), are described. PPFS, PEFS, and poly(ethylene glycol) are then used to prepare poly(propylene fumarate‐co‐sebacate)‐co‐poly(ethylene glycol) (PPFS‐co‐PEG) and poly(ethylene fumarate‐co‐sebacate)‐co‐poly(ethylene glycol) (PEFS‐co‐PEG) block copolymers. The products thus obtained are investigated in terms of the molecular weight, composition, structure, thermal properties, and solubility behavior. A number of design parameters including the molecular weights of PPFS, PEFS, and PEG, the reaction time in the polymer synthesis, and the weight ratio of PEG to PPFS or to PEFS are varied to assess their effects on the product yield and properties. The hydrolytic degradation of PPFS‐co‐PEG and PEFS‐co‐PEG in an isotonic buffer (pH 7.4, 37°C) is investigated, and it is found that the fumarate ester bond cleaves faster than does the sebacate ester bond. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 295–300, 2004  相似文献   

5.
Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐co‐HFP) hollow fiber membranes were prepared by using the phase inversion method. The effect of polyethylene glycol (PEG‐600Mw) with different concentrations (i.e., 0, 5, 7, 10, 12, 15, 18, and 20 wt %) as a pore former on the preparation and characterization of PVDF‐co‐HFP hollow fibers was investigated. The hollow fiber membranes were characterized using scanning electron microscopy, atomic force microscopy, and porosity measurement. It was found that there is no significant effect of the PEG concentration on the dimensions of the hollow fibers, whereas the porosity of the hollow fibers increases with increase of PEG concentration. The cross‐sectional structure changed from a sponge‐like structure of the hollow fiber prepared from pure PVDF‐co‐HFP to a finger‐like structure with small sponge‐like layer in the middle of the cross section with increase of PEG concentration. A remarkable undescribed shape of the nodules with different sizes in the outer surfaces, which are denoted as “twisted rope nodules,” was observed. The mean surface roughness of the hollow fiber membranes decreased with an increase of PEG concentration in the polymer solution. The mean pore size of the hollow fibers gradually increased from 99.12 to 368.91 nm with increase of PEG concentration in polymer solution. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
Poly(arylene sulfide sulfone) (PASS) is a kind of newly developed polymeric membrane material which has excellent mechanical strength, thermal stability, and solvent resistance. And, it would be a potential material for high temperature ultrafiltration and organic solvent filtration. In this article, PASS hybrid ultrafiltration membrane with improved antifouling property was prepared by mixing TiO2 nanoparticles which were grafted with polyacrylic acid (PAA). These membranes were prepared by a phase inversion technique and their separation performance and antifouling property of the prepared membranes were investigated in detail by SEM, FTIR, EDS, contact angle goniometry, filtration experiments of water, and BSA solution. The results shown that the TiO2g‐PAA nanoparticles dispersed well in membrane matrix, the hydrophilicity of the membranes prepared within TiO2g‐PAA nanoparticles have been improved and these membranes exhibited excellent water flux and antifouling performance in separation than that of the pure PASS membranes and PASS membranes with TiO2 nanoparticles. More specifically, among membrane sample M0, M1.5, and MP1.5, MP1.5 which contained 1.5 wt% TiO2g‐PAA exhibited the highest water permeation (190.4 L/m2 h at 100 kPa), flux recovery ratio, and the lowest BSA adsorption amount. POLYM. ENG. SCI., 55:2829–2837, 2015. © 2015 Society of Plastics Engineers  相似文献   

7.
Membrane bioreactor (MBR) as a hybrid technology for wastewater treatment is becoming more popular for wastewater treatment. However, membrane fouling has hindered the widespread application of MBRs. Many efforts have been done for fouling mitigation. In this study, high flux and antifouling microfiltration membranes with unique surface structure, high surface porosity, and permeability were prepared by electrospinning technique. Initially, the optimum thickness of electrospun polyacrylonitrile (PAN) membranes was determined and then, electrospun PAN membrane at optimum thickness were prepared by embedding para‐aminobenzoate alumoxane (PABA) nanoparticles at different concentrations. The effect of PABA nanoparticles on membrane performance was investigated. To investigate the characterization of the prepared membranes Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X‐ray spectroscopy, and water contact angle measurement were employed. The flux recovery ratio results revealed that the antifouling properties of the electrospun PAN membrane were enhanced by modification. The 3 wt % electrospun PABA embedded PAN had the best permeability, hydrophilicity, and antifouling properties among the fabricated membranes and showed remarkable reusability during filtration. The results obtained suggested that the high flux and antifouling electrospun PAN membranes embedded PABA nanoparticles could be used as MBR membranes. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45738.  相似文献   

8.
In this study, a random copolymer of poly(vinyl pyrrolidone‐co‐methyl methacrylate‐co‐acrylic acid) was synthesized via a one‐pot reaction with the reversible addition–fragmentation chain‐transfer method and was then blended with poly(ether sulfone) (PES) to prepare flat‐sheet membranes that were expected to have anticoagulant and antifouling properties. The synthesized copolymer was characterized by Fourier transform infrared (FTIR) and NMR spectroscopy. The molecular weights and molecular weight distributions were determined by gel permeation chromatography. Elemental analysis was used to calculate the molar ratios of vinyl pyrrolidone (VP), methyl methacrylate (MMA), and acrylic acid (AA) in the copolymer. A liquid–liquid phase‐inversion technique was used to prepare the copolymer‐blended PES membranes. X‐ray photoelectron spectroscopy and attenuated total reflectance–FTIR spectroscopy were used to investigate the copolymer on the membrane surfaces. Compared with the pristine PES membrane, the modified PES membranes showed improved hydrophilicity, low hemolysis ratios, decreased protein adsorption, and suppressed platelet adhesion. Furthermore, the thrombin time and activated partial thromboplastin time indicated that the blood compatibility of the modified PES membranes were improved. The results of the 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay and the cell morphology suggested that the cytocompatibility increased. In addition, the modified membranes showed good protein antifouling properties. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4284–4298, 2013  相似文献   

9.
Nanomaterials gained great importance on account of their wide range of applications in many areas. Carbon nanotubes (CNTs) exhibit exceptional electrical, thermal, gas barrier, and tensile properties and can therefore be used for the development of a new generation of composite materials. Functionalized multiwalled carbon nanotubes (MWCNTs) reinforced Polyacrylonitrile‐co‐starch nanocomposites were prepared by in situ polymerization technique. The structural property of PAN‐co‐starch/MWCNT nanocomposites was studied by X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The conductivity, tensile strength, and thermal properties of nanocomposites were measured as a function of MWCNT concentrations. The thermal stability, conductivity, and tensile strength of PAN‐co‐starch/MWCNT nanocomposites were improved with increasing concentration of MWCNTs. Oxygen barrier property of PAN‐co‐starch/MWCNT nanocomposites was calculated and it was found that, the property was reduced substantially with increase of MWCNTs proportion. The synthesized PAN‐co‐starch/MWCNT nanocomposites may used for electrostatically dissipative materials, aerospace or sporting goods, and electronic materials. © 2013 Society of Plastics Engineers  相似文献   

10.
A zwitterionic poly(vinyl alcohol‐co‐ethylene) (PVA‐co‐PE) nanofiber membrane for resistance to bacteria and protein adsorption was fabricated by the atom transfer radical polymerization of sulfobetaine methacrylate (SBMA). The PVA‐co‐PE nanofiber membrane was first surface‐activated by α‐bromoisobutyryl bromide, and then, zwitterionic SBMA was initiated to polymerize onto the surface of nanofiber membrane. The chemical structures of the functionalized PVA‐co‐PE nanofiber membranes were confirmed by attenuated total reflectance–Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy. The morphologies of the PVA‐co‐PE nanofiber membranes were characterized by scanning electron microscopy. The results show that the poly(sulfobetaine methacrylate) (PSBMA) was successfully grafted onto the PVA‐co‐PE nanofiber membrane, and the surface of the nanofiber membrane was more hydrophilic than that of the pristine membrane. Furthermore, the antibacterial adsorption properties and resistance to protein adsorption of the surface were investigated. This indicated that the PSBMA‐functionalized surface possessed good antibacterial adsorption activity and resistance to nonspecific protein adsorption. Therefore, this study afforded a convenient and promising method for preparing a new kind of soft and nonwoven dressing material with antibacterial adsorption and antifouling properties that has potential use in the medical field. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44169.  相似文献   

11.
Poly(acrylonitrile‐coN ‐vinyl‐2‐pyrrolidone)s (PANCNVPs) show excellent biocompatibility. In this work, PANCNVPs with different contents of N‐vinyl‐2‐pyrrolidone (NVP) were fabricated into asymmetric membranes by the phase inversion method. The surface chemical composition of the resultant membranes was determined by Fourier transform infrared spectroscopy–attenuated total reflection. Field emission scanning electron microscopy was used to examine the surface and cross section morphologies of the membranes. It was found that the morphologies hardly change with the increase of NVP content in PANCNVP, while the deionized water flux increases remarkably and the bovine serum albumin (BSA) retention decreases slightly. Experiment of dynamic BSA solution filtration was carried out to evaluate the antifouling properties of the studied membranes. The relative flux reduction of PANCNVP membrane containing 30.9 wt % of NVP is 25.9%, which is far smaller than that of the polyacrylonitrile membrane (68.8%). Results deduce that this improvement comes from the excellent biocompatibility of NVP moieties instead of the hydrophilicity change, because the water contact angles of these membranes fluctuate between 60 and 70°. Results from the membranes using poly(N‐vinyl‐2‐pyrrolidone) (PVP) as an additive confirm that, to a certain extent, the PANCNVP membranes show the advantages of antifouling compared with the polyacrylonitrile/PVP blending membrane. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4577–4583, 2006  相似文献   

12.
Polyacrylonitrile (PAN)‐based copolymers containing phosphonic acid moiety were synthesized for dehydration of aqueous pyridine solution. The in situ complex, formed between the vinylphosphonic acid (VP) moiety in the membrane and the pyridine in the feed, enhanced separation capacity of poly(acrylonitrile‐co‐vinylphosphonic acid) (PANVP) membranes. All the PAN‐based membranes containing phosphonic acid were very selective toward water. The pervaporation performances of PANVP membranes depended on the content of the phosphonic acid moiety in the membrane and operating temperature. The pervaporation separation of water/pyridine mixtures using PANVP membranes exhibited over 99.8% water concentration in permeate and flux of 4–120 g/m2/h depending on the content of vinylphosphonic acid and operating temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 83–89, 1999  相似文献   

13.
Poly(ethylene‐co‐vinyl alcohol)/poly(vinyl pyrrolidone) (EVAL/PVP) blend membranes with antifouling properties were prepared by nonsolvent induced phase separation. Residual PVP in the sample was calculated by infrared spectroscopic data and confirmed by thermogravimetric analysis. The effect of residual PVP on hydrophilicity and permeation characteristics of the membranes was evaluated. Porosity and equilibrium water content of the membranes were influenced by the addition of PVP. The effect of protein fouling on flux using bovine serum albumin as a model system was studied in detail. The residual PVP content could enhance the antifouling property of the membrane. All membranes proved to have sufficient mechanical strength to withstand pressure‐driven filtrations.  相似文献   

14.
Using poly(vinyl alcohol) (PVA) with highly hydrophilic properties as membrane material and poly(ethylene glycol) (PEG) as an additive, we prepared PVA/tetraethoxysilane (TEOS) ultrafiltration (UF) membranes with good antifouling properties by a sol–gel method. The PVA/TEOS UF membranes were characterized by X‐ray diffraction patterns, Fourier transform infrared spectroscopy, scanning electron microscopy, and static contact angle of measurement of water. The hybridization of TEOS to PVA for preparing the PVA/TEOS UF membranes achieved the required permeation performance and good antifouling behaviors. The morphology and permeation performance of the PVA/TEOS membranes varied with the different TEOS loadings and PEG contents. The pure water fluxes (JW) increased and the rejections (Rs) decreased with increasing TEOS loading and PEG content. The PVA/TEOS UF membrane with a PVA/TEOS/PEG/H2O composition mass ratio of 10/3/4/83 in the dope solution had a JW of 66.5 L m?2 h?1 and an R of 60.3% when we filtered it with 300 ppm of bovine serum albumin aqueous solution at an operational pressure difference of 0.1 MPa. In addition, the filtration and backwashing experiment proved that the PVA/TEOS membranes possessed good long‐term antifouling abilities. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4066–4074, 2013  相似文献   

15.
In this study, three different acrylonitrile (AN)‐based polymers, including polyacrylonitrile (PAN), poly(acrylonitrile‐co‐vinyl acetate) [P(AN‐co‐VAc)], and poly(acrylonitrile‐co‐itaconic acid) [P(AN‐co‐IA)], were used as precursors to synthesize activated carbon nanofibers (ACNFs). An electrospinning method was used to produce nanofibers. Oxidative stabilization, carbonization, and finally, activation through a specific heating regimen were applied to the electrospun fibers to produce ACNFs. Stabilization, carbonization, and activation were carried out at 230, 600, and 750 °C, respectively. Scanning electron microscopy, thermogravimetric analysis (TGA), and porosimetry were used to characterize the fibers in each step. According to the fiber diameter variation measurements, the pore extension procedure overcame the shrinkage of the fibers with copolymer precursors. However, the shrinkage process dominated the scene for the PAN homopolymer, and this led to an increase in the fiber diameter. The 328 m2/g Brunauer–Emmett–Teller surface area for ACNFs with PAN precursor were augmented to 614 and 564 m2/g for P(AN‐co‐VAc) and P(AN‐co‐IA), respectively. The TGA results show that the P(AN‐co‐IA)‐based ACNFs exhibited a higher thermal durability in comparison to the fibers of PAN and P(AN‐co‐VAc). The application of these copolymers instead of AN homopolymer enhanced the thermal stability and increased the surface area of the ACNFs even in low‐temperature carbonization and activation processes. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44381.  相似文献   

16.
In this article, polydopamine (PDA) is efficiently adhered on the surface of graphene oxide (GO) by mussel‐inspired chemistry. The obtained reduced GO/PDA (RGO@PDA) nanocomposites are used for catalyzing reversible coordination‐mediated polymerization under microwave radiation. Well‐defined and iodine‐terminated polyacrylonitrile‐co‐poly(n‐butyl acrylate) (PAN‐co‐PnBA) is successfully fabricated by using RGO@PDA nanocomposites as catalysts. Importantly, green and novel strategy of PAN‐co‐PnBA‐type self‐healing nanocomposite materials is further fabricated with RGO@PDA as additive after polymerization as catalyst in one‐pot. As a reinforcement agent, RGO@PDA can also improve the mechanical and self‐healing properties of hybrid materials, which opens up a novel and green methodology for the preparation of self‐healing hybrid materials.  相似文献   

17.
The structure and performance of modified poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐co‐HFP) ultra‐filtration membranes prepared from casting solutions with different concentrations of poly(vinyl pyrrolidone) (PVP) were investigated in this study. Membrane properties were studied in terms of membrane compaction, pure water flux (PWF), water content (WC), membrane hydraulic resistance ( R m), protein rejection, molecular weight cut‐off (MWCO), average pore size, and porosity. PWF, WC, and thermal stability of the blend membranes increased whereas the crystalline nature and mechanical strength of the blend membranes decreased when PVP additive concentration was increased. The contact angle (CA) decreased as the PVP concentration increased in the casting solution, which indicates that the hydro‐philicity of the surface increased upon addition of PVP. The average pore size and porosity of the PVdF‐co‐HFP membrane increased to 42.82 Å and 25.12%, respectively, when 7.5 wt% PVP was blended in the casting solution. The MWCO increased from 20 to 45 kDa with an increase in PVP concentration from 0 to 7.5 wt%. The protein separation study revealed that the rejection increased as the protein molecular weight increased. The PVdF‐co‐HFP/PVP blended membrane prepared from a 7.5 wt% PVP solution had a maximum flux recovery ratio of 74.3%, which explains its better antifouling properties as compared to the neat PVdF‐co‐HFP membrane. POLYM. ENG. SCI., 55:2482–2492, 2015. © 2015 Society of Plastics Engineers  相似文献   

18.
The growing cells of Serratia marcescens (SM) were immobilized with the interpolymer complex carrier, which is formed by the cationic polymer, poly(allyltrimethyl ammonium chloride‐co‐acrylamide) [P(TM‐co‐AAm)], and poly(acrylic acid) (PAA). When the association degree of PAA is suitable to the cationic degree of P(TM‐co‐AAm), the effective crosslinking network provides the most favorable circumstances for the cell immobilization. The alkaline protease can be produced by the immobilized SM with high activity. Compared with the free cells, the immobilized SM has higher thermal stability, acid‐base stability, operational stability, and storage stability. Under the optimum immobilizing conditions, not only the living cells of SM but also thermophilic Bacillus firmus (TBF) were immobilized with the complex of P(TM‐co‐AAm)/PAA. The results show the carrier of P(TM‐co‐AAm)/PAA complex to be superior in properties to the usual carriers, such as Na‐alginate and carrageenan. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 178–183, 2002; DOI 10.1002/app.10293  相似文献   

19.
The blending of a block copolymer into the membrane matrix is a convenient and efficient way to modify membranes. In this study, high‐density polyethylene/polyethylene‐b‐poly(ethylene glycol) (PEG) membranes were prepared via a thermally induced phase separation process, and the extractant effect was investigated. An interesting finding was that the nonpolar extractant (n‐hexane) was more conducive to the surface enrichment of the PEG chains than the polar solvent (ethanol). The reason was deemed to be the combined effect of the entropy drive, interfacial energy, and swelling behavior. In addition, the membrane performance related to the surface chemical properties was studied. The results suggest that the prepared blend membranes extracted by n‐hexane showed enhanced the hydrophilicity, antifouling properties, and water flux. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3816–3824, 2013  相似文献   

20.
Nanofiber‐coated composite membranes were prepared by electrospinning polyvinylidene fluoride‐co‐chlorotrifluoroethylene (PVDF‐co‐CTFE) and PVDF‐co‐CTFE/polyvinylidene fluoride‐co‐hexafluoropropylene (PVDF‐co‐HFP) onto six different Celgard® microporous battery separator membranes. Application of a PVDF‐based copolymer nanofiber coating onto the surface of the battery separator membrane provides a method for improving the electrolyte absorption of the separator and the separator‐electrode adhesion. Peel tests showed that both PVDF‐co‐CTFE and PVDF‐co‐CTFE/PVDF‐co‐HFP nanofiber coatings have comparable adhesion to the membrane substrates. Electrolyte uptake capacity was investigated by soaking the nanofiber‐coated membranes in a liquid electrolyte solution. PVDF‐co‐CTFE and PVDF‐co‐CTFE/PVDF‐co‐HFP nanofiber‐coated membranes exhibited higher electrolyte uptake capacities than uncoated membranes. It was also found that PVDF‐co‐CTFE nanofiber‐coated membranes have higher electrolyte uptakes than PVDF‐co‐CTFE/PVDF‐co‐HFP nanofiber‐coated membranes due to the smaller diameters of PVDF‐co‐CTFE nanofibers and higher polarity of PVDF‐co‐CTFE. The separator–electrode adhesion properties were also investigated. Results showed PVDF‐co‐CTFE and PVDF‐co‐CTFE/PVDF‐co‐HFP nanofiber coatings improved the adhesion of all six membrane substrates to the electrode. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号