首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A considerable cost reduction could be achieved in photovoltaics if efficient solar cells could be made from polycrystalline‐silicon (pc‐Si) thin films on inexpensive substrates. We recently showed promising solar cell results using pc‐Si layers obtained by aluminum‐induced crystallization (AIC) of amorphous silicon in combination with thermal chemical vapor deposition (CVD). To obtain highly efficient pc‐Si solar cells, however, the material quality has to be optimized and cell processes different from those applied for standard bulk‐Si solar cells have to be developed. In this work, we present the different process steps that we recently developed to enhance the efficiency of pc‐Si solar cells on alumina substrates made by AIC in combination with thermal CVD. Our present pc‐Si solar cell process yields cells in substrate configuration with efficiencies so far of up to 8·0%. Spin‐on oxides are used to smoothen the alumina substrate surface to enhance the electronic quality of the absorber layers. The cells have heterojunction emitters consisting of thin a‐Si layers that yield much higher Voc values than classical diffused emitters. Base and emitter contacts are on top of the cell in interdigitated finger patterns, leading to fill factors above 70%. The front surface of the cells is plasma textured to increase the current density. Our present pc‐Si solar cell efficiency of 8% together with the fast progression that we have made over the last few years indicate the large potential of pc‐Si solar cells based on the AIC seed layer approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Thin film hetero‐emitter solar cells with large‐grained poly‐silicon absorbers of around 10 µm thickness have been prepared on glass. The basis of the cell concept is electron‐beam‐crystallization of an amorphous or nanocrystalline silicon layer deposited onto a SiC:B layer. The SiC:B layer covers a commercially well available glass substrate, serving as diffusion barrier, contact layer and dopand source. For silicon absorber deposition a low pressure chemical vapour deposition was used. The successively applied e‐beam crystallization process creates poly‐silicon layers with grain sizes up to 1 × 10 mm2 with low defect densities. The high electronic quality of the absorber is reflected in open circuit voltages as high as 545 mV, which are realized making use of the well‐developed a‐Si:H hetero‐emitter technology. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A fabrication process for Emitter‐Wrap‐Through solar cells on monocrystalline material with high quality gap passivation by wet thermal silicon dioxide is investigated. Masking and structuring steps are performed by screen‐printing technology. Via‐holes are created by an industrially applicable high‐speed laser drilling process. The cell structure features a selective emitter structure fabricated in a single high temperature step: a highly doped emitter at the via‐holes and the rear side, allowing for a low via‐hole resistivity as well as a low resistivity contact to screen‐printed pastes, and a moderately doped front side emitter exhibiting high quantum efficiency in the low wavelength range. Therefore a novel approach is applied depositing either doped or undoped PECVD silicon dioxide layers on the front side. It is shown that doping profiles advantageous for the EWT‐cell structure can be achieved. The screen‐printed aluminum paste is found to penetrate the underlying thermal dioxide layer at appropriate contact firing conditions leading to a zone of high recombination in the overlap region of aluminum and silicon dioxide. It is shown that conventional PECVD‐anti‐reflection silicon nitride acts as effective protection layer reducing the recombination in this region. Designated area conversion efficiencies up to 18.8% on FZ material are obtained applying the single step side selective emitter fabrication technique. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
We study Ge solar cells with epitaxial GaInP windows for application as the third junction of GaInP/GaAs/Ge three‐junction solar cells. We demonstrate Ge junctions with open‐circuit voltages above 230 mV, fill factors above 65%, and internal quantum efficiencies of ∼90%. By varying separately the base and emitter contributions to the junction dark current, we deduce the factors limiting the performance of this device, and we project the improvement to the device performance that may be obtainable if key limiting factors such as the emitter surface‐recombination velocity can be mitigated. Published in 2001 by John Wiley & Sons, Ltd.  相似文献   

5.
We demonstrate the use of a copper‐based metallization scheme for the specific application of thin‐film epitaxial silicon wafer equivalent (EpiWE) solar cells with rear chemical vapor deposition emitter and conventional POCl3 emitter. Thin‐film epitaxial silicon wafer equivalent cells are consisting of high‐quality epitaxial active layer of only 30 µm, beneath which a highly reflective porous silicon multilayer stack is embedded. By combining Cu‐plating metallization and narrow finger lines with an epitaxial cell architecture including the porous silicon reflector, a Jsc exceeding 32 mA/cm2 was achieved. We report on reproducible cell efficiencies of >16% on >70‐cm2 cells with rear epitaxial chemical vapor deposition emitters and Cu contacts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Boron and phosphorus doping of crystalline silicon using a borosilicate glass (BSG) layer from plasma‐enhanced chemical vapor deposition (PECVD) and phosphorus oxychloride diffusion, respectively, is investigated. More specifically, the simultaneous and interacting diffusion of both elements through the BSG layer into the silicon substrate is characterized in depth. We show that an overlying BSG layer does not prevent the formation of a phosphorus emitter in silicon substrates during phosphorus diffusion. In fact, a BSG layer can even enhance the uptake of phosphorus into a silicon substrate compared with a bare substrate. From the understanding of the joint diffusion of boron and phosphorus through a BSG layer into a silicon substrate, a model is developed to illustrate the correlation of the concentration‐dependent diffusivities and the emerging diffusion profiles of boron and phosphorus. Here, the in‐diffusion of the dopants during diverse doping processes is reproduced by the use of known concentration dependences of the diffusivities in an integrated model. The simulated processes include a BSG drive‐in step in an inert and in a phosphorus‐containing atmosphere. Based on these findings, a PECVD BSG/capping layer structure is developed, which forms three different n++−, n+− and p+−doped regions during one single high temperature process. Such engineered structure can be used to produce back contact solar cells. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
We propose a novel approach to thin‐film silicon solar cells, namely the freestanding monocrystalline silicon layer transfer process with heterojunction emitter (FMS‐HJ). High crystallographic quality mono‐Si films were deposited on freestanding porous silicon (PS) films by chemical vapor deposition (CVD). These free‐standing mono‐Si (FMS) films were processed into solar cells by creating a‐a‐Si/c‐Si heterojunction. In our preliminary experiments a thin‐film FMS‐HJ solar cell with 9.6% efficiency was realized in a 20‐μμm‐thin active layer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
We present an interdigitated back‐contact silicon heterojunction system designed for liquid‐phase crystallized thin‐film (~10 µm) silicon on glass. The preparation of the interdigitated emitter (a‐Si:H(p)) and absorber (a‐Si:H(n)) contact layers relies on the etch selectivity of doped amorphous silicon layers in alkaline solutions. The etch rates of a‐Si:H(n) and a‐Si:H(p) in 0.6% NaOH were determined and interdigitated back‐contact silicon heterojunction solar cells with two different metallizations, namely Al and ITO/Ag electrodes, were evaluated regarding electrical and optical properties. An additional random pyramid texture on the back side provides short‐circuit current density (jSC) of up to 30.3 mA/cm2 using the ITO/Ag metallization. The maximum efficiency of 10.5% is mainly limited by a low of fill factor of 57%. However, the high jSC, as well as VOC values of 633 mV and pseudo‐fill factors of 77%, underline the high potential of this approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, back‐contacted back‐junction n‐type silicon solar cells featuring a large emitter coverage (point‐like base contacts), a small emitter coverage (point‐like base and emitter contacts), and interdigitated metal fingers have been fabricated and analyzed. For both solar cell designs, a significant reduction of electrical shading losses caused by an increased recombination in the non‐collecting base area on the rear side was obtained. Because the solar cell designs are characterized by an overlap of the B‐doped emitter and the P‐doped base with metal fingers of the other polarity, insulating thin films with excellent electrical insulation properties are required to prevent shunting in these overlapping regions. Thus, with insulating thin films, the geometry of the minority charge carrier collecting emitter diffusion and the geometry of the interdigitated metal fingers can be decoupled. In this regard, plasma‐enhanced chemical vapor deposited SiO2 insulating thin films with various thicknesses and deposited at different temperatures have been investigated in more detail by metal‐insulator‐semiconductor structures. Furthermore, the influence of different metal layers on the insulation properties of the films has been analyzed. It has been found that by applying a SiO2 insulating thin film with a thickness of more than 1000 nm and deposited at 350 °C to solar cells fabricated on 1 Ω cm and 10 Ω cm n‐type float‐zone grown silicon substrates, electrical shading losses could be reduced considerably, resulting in excellent short‐circuit current densities of more than 41 mA/cm2 and conversion efficiencies of up to 23.0%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In this work, we report on ion‐implanted, high‐efficiency n‐type silicon solar cells fabricated on large area pseudosquare Czochralski wafers. The sputtering of aluminum (Al) via physical vapor deposition (PVD) in combination with a laser‐patterned dielectric stack was used on the rear side to produce front junction cells with an implanted boron emitter and a phosphorus back surface field. Front and back surface passivation was achieved by thin thermally grown oxide during the implant anneal. Both front and back oxides were capped with SiNx, followed by screen‐printed metal grid formation on the front side. An ultraviolet laser was used to selectively ablate the SiO2/SiNx passivation stack on the back to form the pattern for metal–Si contact. The laser pulse energy had to be optimized to fully open the SiO2/SiNx passivation layers, without inducing appreciable damage or defects on the surface of the n+ back surface field layer. It was also found that a low temperature annealing for less than 3 min after PVD Al provided an excellent charge collecting contact on the back. In order to obtain high fill factor of ~80%, an in situ plasma etching in an inert ambient prior to PVD was found to be essential for etching the native oxide formed in the rear vias during the front contact firing. Finally, through optimization of the size and pitch of the rear point contacts, an efficiency of 20.7% was achieved for the large area n‐type passivated emitter, rear totally diffused cell. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A good light trapping scheme is necessary to improve the performance of amorphous/microcrystalline silicon tandem cells. This is generally achieved by using a highly reflective transparent conducting oxide/metal back contact plus an intermediate reflector between the component cells. In this work, the use of doped silicon oxide as alternative n‐layer in micromorph solar cells is proposed as a means to obtain high current values using a simple Ag back contact and no extra reflector between the component cells n‐doped silicon oxide layers with a wide range of optical and electrical properties have been prepared. The influence of different deposition regimes on the material properties has been studied. The main findings are the following: (i) when carbon dioxide is added to the gas mixture, sufficiently high hydrogen dilution is necessary to widen the transition region from highly conductive microcrystalline‐like films to amorphous material characterized by low electrical conductivity; (ii) lower refractive index values are found with lower deposition pressure. Optimal n‐doped silicon oxide layers have been used in both component cells of micromorph devices, adopting a simple Ag back contact. Higher current values for both cells are obtained in comparison with the values obtained using standard n‐doped microcrystalline silicon, whereas similar values of fill factor and open circuit voltage are measured. The current enhancement is particularly evident for the bottom cell, as revealed by the increased spectral response in the red/infrared region. The results prove the high potential of n‐doped silicon oxide as ideal reflector for thin‐film silicon solar cells. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Six different resistivities (0.32, 0.57, 1.2, 2.2, 9.1 and 20 Ω cm) were investigated to understand the dopant–defect interaction in n‐type, antimony‐doped, dendritic web silicon ribbon, and to study its response to gettering and passivation during belt furnace processing (BFP). The as‐grown lifetime was found to be a strong function of resistivity with higher resistivity displaying higher lifetime. Phosphorus gettering at 925° C/6 min raised the as‐grown lifetime of ∼1 μs in 20 Ω cm n‐web to 5.4 μs. A combination of phosphorus gettering followed by simultaneous Al gettering and SiN hydrogenation raised the 20 Ω cm n‐web lifetime to 78 μs. Unlike the as‐grown web, the processed lifetime was greater than 75 μs for all resistivities, with no clear doping dependence. This is attributed to the very effective gettering and passivation during the belt furnace processing. Front surface field (FSF) n+–n–p+ cells were fabricated by spin‐on phosphorus diffusion on the front and screen‐printed Al on the back. A lifetime value of over 100 μs was obtained in a 14.2% screen‐printed FSF n‐web solar cell fabricated on 100‐μm‐thick 20 Ω cm substrate. The screen‐printed FSF cell fabricated on (111) FZ gave an efficiency of 14.9% with a fill factor of 77.6%. These results are supported by model calculations, which revealed a maximum efficiency of ∼15% for 100‐μm‐thick planar screen‐printed FSF cells and their insensitivity to bulk lifetime above 60 μs. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Front silicon heterojunction and interdigitated all‐back‐contact silicon heterojunction (IBC‐SHJ) solar cells have the potential for high efficiency and low cost because of their good surface passivation, heterojunction contacts, and low temperature fabrication processes. The performance of both heterojunction device structures depends on the interface between the crystalline silicon (c‐Si) and intrinsic amorphous silicon [(i)a‐Si:H] layer, and the defects in doped a‐Si:H emitter or base contact layers. In this paper, effective minority carrier lifetimes of c‐Si using symmetric passivation structures were measured and analyzed using an extended Shockley–Read–Hall formalism to determine the input interface parameters needed for a successful 2D simulation of fabricated baseline solar cells. Subsequently, the performance of front silicon heterojunction and IBC‐SHJ devices was simulated to determine the influence of defects at the (i)a‐Si:H/c‐Si interface and in the doped a‐Si:H layers. For the baseline device parameters, the difference between the two device configurations is caused by the emitter/base contact gap recombination and the back surface geometry of IBC‐SHJ solar cell. This work provides a guide to the optimization of both types of SHJ device performance, predicting an IBC‐SHJ solar cell efficiency of 25% for realistic material parameters. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Silicon represents an interesting material to fabricate low‐cost and relatively simple and high‐efficient solar cells in the low and medium concentration range. In this paper, we discuss a novel cell scheme conceived for concentrating photovoltaic, named emitter wrap through with deep grooved base (EWT‐DGB), and compare it with the simpler passivated emitter solar cell. Both cells have been fabricated by means of a complementary metal–oxide–semiconductor‐compatible process in our laboratory. The experimental characterization of both cells is reported in the range 1–200 suns in terms of conversion efficiency, open circuit voltage, short circuit current density and fill factor. In particular, for the EWT‐DGB solar cells, we obtain an encouraging 21.4% maximum conversion efficiency at 44 suns. By using a calibrated finite‐element numerical electro‐optical simulation tool, validated by a comparison with experimental data, we study the potentials of the two architectures for concentrated light conditions considering possible realistic improvements with respect to the fabricated devices. We compare the solar cell figures of merit with those of the state‐of‐the‐art silicon back‐contact back‐junction solar cell holding the conversion efficiency record for concentrator photovoltaic silicon. Simulation results predict a 24.8% efficiency at 50 suns for the EWT‐DGB cell and up to 23.9% at 100 suns for the passivated emitter solar cell, thus confirming the good potential of the proposed architectures for low to medium light concentration. Finally, simulations are exploited to provide additional analysis of the EWT‐DGB scheme under concentrated light. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Microcrystalline silicon‐based single‐junction pin solar cells have been fabricated by very high‐frequency plasma enhanced chemical vapor deposition using a showerhead cathode at high pressures and under silane depletion conditions. The i‐layers are made near the transition from amorphous to crystalline. It was found that, especially at high crystalline fractions, the open‐circuit voltage and fill factor are very sensitive to the morphology of the substrate. At an i‐layer deposition rate 0·45 nm/s, we have measured a stabilised efficiency of 10% (Voc = 0·52 V, FF = 0·74) for a cell made on texture‐etched ZnO:Al. The performance is stable under light soaking. The defect density of the absorber layer is in the 1015 cm−3 range. In spite of the presence of oxygen contamination, good electrical properties and good infrared cell response are obtained. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Recombination lifetimes of multicrystalline silicon solar cell precursors have been measured experimentally as a function of injection‐level, and modeled using Shockley–Read–Hall statistics. The expressions for the variable lifetimes are then used to predict the final cell open‐circuit voltages and fill factors using a simple analytic method. When accurate recombination lifetimes measurements are possible, the predicted parameters match well with the measured values on finished cells. The cells are shown to be limited by the presence of bulk recombination, which not only limits the open‐circuit voltage through lower lifetimes, but also reduces the fill factor due to a strong injection‐level dependence around one‐sum maximum‐power conditions. It is shown that such non‐ideal behaviour cannot be adequately explained by junction recombination. The specific effect of interstitial iron, an important impurity in silicon, on voltages and fill factors is modeled numerically and discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Recent progress in the metallisation of poly‐silicon thin‐film solar cells on glass, created by solid phase crystallisation (SPC) of evaporated amorphous silicon (EVA), revealed that shunting through sub‐micron holes (density 100–200 mm−2) in the films causes severe shunting problems when the air‐side metal contact is deposited onto these diodes, by creating effective shunting paths between the two highly doped layers of EVA cells. We present evidence of these pinholes by optical transmission and focussed ion beam (FIB) microscopic images and confirm the point‐like pinhole shunts using lock‐in thermographic images. The latter revealed that the Al rear electrode induces strong ohmic shunts below the grid lines and a high density of weak non‐linear shunts away from the grid lines. Two distinctly different approaches are shown to reduce the shunting problem to a negligible level: (i) to contact only a small fraction of the rear Si surface via a point contacting scheme, whereby the metal layer needs to be thin (<1 µm) and the fractional area coverage small (<5%), and (ii) to deposit line contacts in a bifacial interdigitated scheme, whereby a thick layer of metal is deposited followed by a wet‐chemical etching step that effectively reduces shunting by preferentially etching away the shunting paths. Test devices with an area of 1 cm2 achieve pseudo fill factors ( pFF ) of above 75% and diode ideality factors of below 1·3, demonstrating that the proposed methods are well suited for the metallisation of the rear surface of EVA solar cells. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we report on commercially viable screen printing (SP) technology to form boron emitters. A screen‐printed boron emitter and ion‐implanted phosphorus back surface field were formed simultaneously by a co‐annealing process. Front and back surfaces were passivated by chemically grown oxide capped with plasma‐enhanced chemical vapor deposition silicon nitride stack. Front and back contacts were formed by traditional SP and firing processes with silver/aluminum grid on front and local silver back contacts on the rear. This resulted in 19.6% efficient large area (239 cm2) n‐type solar cells with an open‐circuit voltage Voc of 645 mV, short‐circuit current density Jsc of 38.6 mA/cm2, and fill factor of 78.6%. This demonstrates the potential of this novel technology for production of low‐cost high‐efficiency n‐type silicon solar cells. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A research project is under way at The University of New South Wales aiming at the realisation of a novel type of polycrystalline silicon thin‐film solar cell on glass. The idea is to first create a thin large‐grained polycrystalline seed layer on glass by aluminium‐induced crystallisation of amorphous silicon and then to epitaxially thicken the seed layer with ion‐assisted deposition. By mid‐2003 this ALICIA project had achieved laboratory cells with voltages of up to 163 mV, as reported elsewhere. In the present paper we give an overview of recent progress (improved Si epitaxy process, improved control of base doping profile due to the use of phosphorus dopants instead of gallium, hydrogen passivation) that has improved the voltages of ALICIA solar cells to 270 mV. Furthermore, the strategy for further voltage improvements is presented. At the present point in time only the voltages of ALICIA cells are known, but obviously solar cells also require current for good efficiency. Hence much improvement in both voltage and current is still needed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号