首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
EPDM rubber was reinforced with titania in situ generated by using a nonhydrolytic sol‐gel (NHSG) process starting from TiCl4 as titania precursor and tert‐butanol as oxygen donor. Titania particles in anatase form and with average diameter of 6 nm were synthesized via NHSG route and then the same procedure was adopted in presence of EPDM rubber to obtain composites containing up to 30 wt% of filler. Extraction and equilibrium swelling tests suggested an interfering effect of the NHSG reaction on the vulcanization process of the rubber resulting to a crosslink density which decreased in the presence of titania. Quasi‐static and dynamic‐mechanical characterizations indicated that the presence of titania as rigid filler in both the unvulcanized and vulcanized EPDM matrix led to a significant increase in stiffness and stress at break. The experimental values of modulus were systematically higher than the values predicted by classical equations suggesting an additional stiffening contribution deriving from the molecular interaction between the rubber and the filler. POLYM. ENG. SCI., 54:2544–2552, 2014. © 2013 Society of Plastics Engineers  相似文献   

2.
将三元乙丙橡胶(EPDM)与环氧化天然橡胶(ENR)共交联改性后,再与天然橡胶(NR)共混,考察了ENR共交联改性EPDM/NR共混胶的硫化特性、硫化胶的物理机械性能、溶胀指数和耐热空气老化性能,并对该硫化胶进行了差示扫描量热分析。结果表明,EPDM经过ENR共交联改性后与NR共混,ENR共交联改性EPDM/NR共混胶的交联程度明显提高,各相达到了同步交联,硫化胶的综合性能得到了显著改善。  相似文献   

3.
New nanocomposite thermoplastic vulcanizates (TPVs) comprising dynamically cross‐linked nanoscale EPDM rubber particles dispersed throughout the polypropylene (PP) matrix have been prepared by both batch and continuous melt blending of PP with EPDM in the presence of vulcanizing ingredients, nanoclay and maleated EPDM (EPDM‐g‐MA) as compatibilizer. X‐ray diffraction, linear melt viscoelastic measurement, and tensile mechanical behavior results revealed that the developed microstructure is strongly affected by the type of the melt compounding process as well as the route of material feeding. When EPDM phase was precompounded with a vulcanizing agent, nanoclay, and EPDM‐g‐MA prior to the melt blending with PP, not only nanosize cross‐linked rubber particles appeared uniformly throughout the PP continuous phase, but also the melt blending leads to the significant enhancement of the mechanical properties compared with counterpart samples prepared by one‐step melt mixing process. Also better dispersion of nano layers in the rubber compound before melt blending with PP results in higher mechanical properties of the resulted TPV. POLYM. ENG. SCI., 56:914–921, 2016. © 2016 Society of Plastics Engineers  相似文献   

4.
The effects of dynamic vulcanization on the process development and some properties, such as tensile properties, swelling index, gel content, crystallinity, and morphology, of the polypropylene (PP)/ethylene-propylene diene terpolymer (EPDM)/natural rubber (NR) blends were investigated. Dynamically vulcanized blends show higher stabilization torque than unvulcanized blends. In terms of tensile properties, the tensile strength and tensile modulus (stress at 100% elongation, M100) of the vulcanized blends have been found to increase as compared with the unvulcanized blends, whereas the elongation at break is higher in the blend with richer EPDM content. These results can be attributed to the formation of cross-linking in the rubber phase. The formation of cross-links in the rubber phase has also been proved by swelling index and gel content. The percentage of crystallinity of the blends is decreased by dynamic vulcanization. Scanning electron microscopy (SEM) micrographs from the surface extraction of the blends support that the cross-links occurred during dynamic vulcanization.  相似文献   

5.
This article examines thermoplastic elastomers (TPEs) and thermoplastic vulcanizates (TPVs) as two types of elastomers from melt-blended and dynamically vulcanized ethylene–propylene–diene monomer (EPDM) rubber materials and nylon 6 plastic materials. A series of investigations were conducted on the mechanical properties, morphology, dynamic mechanical properties, hysteresis behavior, and dynamic antivibration properties with different nylon 6 contents. The experimental results showed that the incompatibility between EPDM and nylon 6 led to the easy destruction of the TPV materials in two interfacial polymers upon the application of an external force. Thus, after a dynamic vulcanization process, the mechanical properties of the EPDM/nylon 6 blends were not as good as those of the TPE materials. In terms of morphology, nylon 6 plastics were uniformly distributed in the EPDM/nylon 6 blends during the EPDM rubber phase before vulcanization was performed. After the dynamic vulcanization, phase inversion was produced in which rubber microparticles were formed and dispersed in the nylon 6 plastic phase. The results of dynamic mechanical analysis, compression vibration hysteresis behavior, and dynamic property antivibration experiments showed that the blends provided better vibration isolation and antivibration performance after the amount of nylon 6 was increased and EPDM and nylon 6 were blended through dynamic vulcanization. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

6.
NR/EPDM 的共硫化   总被引:1,自引:3,他引:1  
利用环氧化天然橡胶(ENR)与天然橡胶(NR)和三元乙丙橡胶(EPDM)均有很好相容性的特点,采用硫化促进剂预混工艺对NR/EPDM并用胶实施共硫化。考察了其对NR/EPDM并用胶的硫化特性、硫化胶的物理机械性能和耐热空气老化性能的影响。结果表明:本工艺确实能改善NR/EPDM的共硫化性能,所得硫化胶物理性能较好且操作简单。  相似文献   

7.
对比分析了动态热塑性硫化胶(TPV)的加工设备,着重介绍了附加振动力场的三螺杆反应挤出机的结构特点以及利用该机进行三元乙丙橡胶/聚丙烯(EPDM/PP)的动态全硫化,对制品的物理力学性能和微观结构分别进行了测试分析和电镜扫描。结果表明,振动力场作用下EPDM/PP共混体系反应挤出动态硫化加工可有效地实现动态硫化反应、硫化橡胶的粉碎和分散以及相态反转,振动力场的作用明显提高了TPV性能。  相似文献   

8.
采用液相还原法制备铁钴合金纳米粒子(nano-FeCo),通过不同的制备工艺与天然胶乳共混,制备铁钴纳米合金/天然橡胶复合材料(NR/nano-FeCo)。利用X射线衍射仪(XRD)和透射电子显微镜(TEM)对样品结构进行表征。并考察了复合材料的力学性能及不同制备工艺对复合材料性能的影响。结果表明,液相还原法制备的nano-FeCo粒子为无定形结构,粒径约为70 nm。在天然橡胶(NR)基体中分散均匀,分散相粒径在100 nm左右;随着纳米粒子的加入,有效地提高了复合材料的力学性能,同时,可提高NR的热老化性能。NR/nano-FeCo的最佳制备工艺是乳液共混法。  相似文献   

9.
制备了超细全硫化粉末丁苯橡胶(UFPSBR)/三元乙丙橡胶(EPDM)共混物,研究了其硫化特性、相态结构、动态力学性能及物理机械性能。透射电镜观察表明,无论UFPSBR与EPDM共混比如何,UFPSBR粒子始终保持为分散相。当UFPSBR用量为10份(质量)时,它在EPDM中的分散相尺寸为200 nm左右;用量较高时其分散相尺寸较大,存在大量的聚集体。动态力学分析结果显示共混物存在2个玻璃化转变温度,说明共混物存在两相结构。加工性能分析结果表明,UFPSBR粒子在EPDM基质中形成了网络结构,对EPDM基质起到了较好的增强作用,当UFPSBR与EPDM的质量共混比为50/50时,共混物的拉伸强度可达13.4 MPa。UFPSBR对EPDM的硫化特性有明显影响。  相似文献   

10.
Bis(diisopropyl)thiophosphoryl disulfide (DIPDIS) was used successfully as a novel coupling agent cum accelerator to co‐vulcanize the elastomer blend comprising highly unsaturated natural rubber (NR) and ethylene propylene diene rubber (EPDM) of low unsaturation content. The blend vulcanizates produced exhibit improved physical properties that can be further enhanced by implementing a two‐stage vulcanization technique, as well as by judicious selection of the NR‐to‐EPDM ratio. The results indicate coherency and homogeneity in the blend composition of two‐stage vulcanizates. The cure‐rate mismatch problem could thus be solved through the formation of rubber‐bound intermediates with a multifunctional rubber additive (i.e., DIPDIS), thereby restricting the curative migration from lower to highly unsaturated rubber. The blend morphology as revealed by SEM studies accounts for significant improvement in physical properties, particularly in two‐stage vulcanizates. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 800–808, 2001  相似文献   

11.
Silica nanoparticles were synthesized by means of a sol–gel method and generated in ethylene propylene diene monomer rubber (EPDM) by in situ synthesis. The properties were determined using scanning electron microscopy, attenuated total reflectance Fourier‐transform infrared spectroscopy, thermogravimetric analysis, tensile testing, dynamic mechanical analysis, swelling tests, and gel content determination. The silica particles were homogenously dispersed in the EPDM matrix, with the presence of agglomerates, especially for high silica contents. The swelling experiments showed a decrease in the crosslinking density of the vulcanized rubber due to the presence of the silica nanoparticles. The mechanical properties, however, were significantly improved by the presence of the stiff silica nanoparticles. The effect of the amount of silica on the thermomechanical properties and thermal degradation of EPDM was also investigated. The presence of silica showed an increase in the storage and loss moduli at high temperatures, probably due to the increasing filler content. The thermal degradation analysis showed that the presence of silica particles incorporated in the EPDM matrix had no significant influence on the thermal stability of the composites. POLYM. COMPOS., 36:825–833, 2015. © 2014 Society of Plastics Engineers  相似文献   

12.
EPDM incorporated into blends of natural rubber/butadiene rubber (NR/BR) improves ozone resistance. In this work, the inferior mechanical properties of NR/BR/EPDM blends generally obtained by conventional straight mixing are overcome by utilizing a reactive processing technique. The entire amount of curatives, based on a commonly employed accelerator N‐cyclohexyl‐2‐benzothiazole sulfenamide (CBS) and sulfur, is first added into the EPDM phase. After a thermal pretreatment step tuned to the scorch time of the EPDM phase, the modified EPDM is mixed with premasticated NR/BR. The reactive blend vulcanizates show a significant improvement in tensile properties: tensile strength and elongation at break, as compared to those prepared by straight mixing, in both gum and carbon black‐filled blends. The increase of tensile properties in gum and filled reactive blend vulcanizates does suggest that the reactive processing technique leads to more homogeneous blends due to, either a better crosslink distribution, or more homogeneous filler distribution, or both. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:2538–2546, 2007  相似文献   

13.
Thermoplastic natural rubber based on polyamide‐12 (PA‐12) blend was prepared by melt blending technique. Influence of blending techniques (i.e., simple blend and dynamic vulcanization) and types of natural rubber (i.e., unmodified natural rubber (NR) and epoxidized natural rubber (ENR)) on properties of the blends were investigated. It was found that the simple blends with the proportion of rubber ~ 60 wt % exhibited cocontinuous phase structure while the dynamically cured blends showed dispersed morphology. Furthermore, the blend of ENR exhibited superior mechanical properties, stress relaxation behavior, and fine grain morphology than those of the blend of the unmodified NR. This is attributed to chemical interaction between oxirane groups in ENR molecules and polar functional groups in PA‐12 molecules which caused higher interfacial adhesion. It was also found that the dynamic vulcanization caused enhancement of strength and hardness properties. Temperature scanning stress relaxation measurement revealed improvement of stress relaxation properties and thermal resistance of the dynamically cured ENR/PA‐12 blend. This is attributed to synergistic effects of dynamic vulcanization of ENR and chemical reaction of the ENR and PA‐12 molecules. Furthermore, the dynamically cured ENR/PA‐12 blend exhibited smaller rubber particles dispersed in the PA‐12 matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
The effect of aramid, glass and cellulose short fibers on the processing behavior, crosslinking density and mechanical properties of natural rubber (NR), ethylene‐propylene‐diene terpolymer rubber (EPDM) and styrene‐butadiene rubber (SBR) has been investigated. Two fiber percentages (10 and 20 phr) were added to the rubber. The results have shown that the above‐mentioned fibers, especially aramid fibers, are effective reinforcing agents for these rubbers, giving rise to a significant increase in mechanical properties, such as tensile modulus and strength, and tear and abrasion resistance. Moreover, a significant decrease in the time to reach 97% of curing, tc (97) is observed, which indicates that the fibers tend to increase the vulcanization rate, regardless of the rubber used. Fibers give also rise to an increase in crosslinking, especially the aramid fibers.  相似文献   

15.
trans-Polyoctylene rubber (TOR) was melt blended with an incompatible NR/EPDM (70/30) blend. Mixing torque and temperature were reduced as TOR was added to NR/EPDM blend. The curing characteristics of the blend were affected as TOR participated in vulcanization and became a part of network. A scanning electron micrograph demonstrated that addition of TOR improved the compatibility of the blend and thereby led to a finer phase morphology. The ozone resistance of the blends was determined in terms of a critical stress–strain parameter. The critical stored energy density for ozone cracking was significantly enhanced for the TOR containing rubber blend. It was believed that the improvement in ozone resistance arised from finely dispersed ozone-resistant EPDM particles in the blend. TOR caused an improvement in dynamic properties and an increase in tensile modulus, but a decrease in tensile stress and elongation at break of the rubber blend. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 749–756, 1999  相似文献   

16.
The effect of sol–gel synthesized magnesium oxide (MgO) nanoparticles as cure activator is studied for the first time in the vulcanization of natural rubber (NR) and compared with conventional zinc oxide (ZnO) in terms of cure, mechanical, and thermal properties. The NR vulcanizate with 1 phr (Parts per hundred parts of rubber) nano MgO shows an excellent improvement in the curing characteristics and the value of cure rate index is about 400% greater for NR vulcanizate containing 1 phr nano MgO in comparison to the NR vulcanizate with 5 phr conventional ZnO. Both mechanical and thermal properties of NR vulcanizate are found to be satisfactory in the presence of 1 phr nano MgO as cure activator in comparison to conventional NR vulcanizate. This study shows that only 1 phr nano MgO can successfully replace 5 phr conventional ZnO with better resulting properties in the sulfur vulcanization of NR. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42705.  相似文献   

17.
采用硫载体硫化剂4,4′-二硫化二吗啉(DTDM)对三元乙丙橡胶(EPDM)进行活性预处理,研究了活性预处理EPDM/天然橡胶(NR)并用胶的性能,并探讨了活性预处理EPDM对并用胶力学性能影响的机理。结果表明,预处理EPDM/NR并用胶的共硫化程度得到改善,并用硫化胶的力学性能提高;并用硫化胶的耐老化性能优于NR硫化胶,但比未处理EPDM/NR并用硫化胶差;并用胶只存在1个玻璃化温度的转变区,两相的相容性得到改善;在高温动态条件下,EPDM与DTDM发生活性反应,但未生成大量凝胶。  相似文献   

18.
This work demonstrates an approach of in situ reactive compatibilization between polypropylene (PP) and ethylene‐propylene‐diene monomer (EPDM) by using ZDMA as a compatibilizer and, simultaneously, as a very strong reinforcing agent. With 7phr ZDMA in the PP/EPDM (30/70, w/w) thermoplastic vulcanizate (TPV), the tensile strength and elongation at break were increased from 5.3 MPa and 222% up to 11.2 MPa and 396%, respectively. Increasing the PP concentration further improved mechanical properties of the TPVs with ZDMA. This tremendous reinforcing as well as the compatibilization effect of the ZDMA was understood by polymerization of ZDMA and ZDMA reacting with EPDM and PP during peroxide induced dynamic vulcanization. A peculiar nano‐composite structure that the crosslinked rubber particles were “bonded” by a transition zone which containing numerous of nano‐particles with dimensions of about 20–30 nm was observed from transmission electron microscopy (TEM). Scanning electron microscopy (SEM) results showed that increase of PP/EPDM ratio reduced the size of crosslinked EPDM particles. Moreover, we found that the ZDMA reinforced EPDM particles resulted in a higher tan δ peak temperature for EPDM phase and built “filler‐filler”‐like networking in the PP melt. POLYM. COMPOS. 34:1357–1366, 2013. © 2013 Society of Plastics Engineers  相似文献   

19.
Phenolic resin (PF) was incorporated into rubbers by in situ polymerization at the vulcanization conditions of rubbers. The PF with a localized three‐dimensional network structure was formed in chloroprene rubber (CR), whereas the fabric PF was formed in ethylene–propylene rubber (EPDM). The study results showed that the PF phase was effective on reinforcing these rubbers. Depending on the morphologies of the formed PF phases, various rubber properties could be significantly enhanced. In the case of CR rubber, the tensile strength, tear strength, and modulus could be considerably enhanced, but the elongation and resilience properties were limitedly affected by PF addition. For EPDM rubber, all mechanical properties were improved, particularly the elongation, about 26% increase. The substantial improvements of mechanical properties of CR and EPDM rubbers were attributed to their morphology, high flexibility, moderate stiffness, and excellent bonding with rubber matrix. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The migration of sulfur from natural rubber (NR) compound to the ground waste ethylene‐propylene‐diene monomer (EPDM) rubber phase may have caused the cure incompatibility between these two rubbers. Optimization of accelerators had been adopted to overcome the cure incompatibility in NR/(R‐EPDM) blends as well as to get increased curative distribution. In this study, blends of NR and R‐EPDM were prepared. The effect of accelerator type on curing characteristics, tensile properties, and dynamic mechanical properties of 70/30/NR/(R‐EPDM) blend was investigated. Four types of commercial accelerators were selected [ie, N‐tert‐butyl‐2‐benzothiazyl‐sulphonamide , N‐cyclohexyl‐benzothiazyl‐sulfenamide (CBS), tetramethylthiuram disulfide, and 2‐mercaptobenzothiazol]. It was found that the tensile strength of the blends cured in the presence of CBS was relatively higher than the other three accelerators. Scanning electron micrographs of CBS‐cured NR/(R‐EPDM) blends exhibited more roughness and cracking path, indicating that higher energy was required toward the fractured surface. The high crosslinking density observed from the swelling method could be verified from the storage modulus (E′) and damping factor (tan δ) where (tetramethylthiuram disulfide)‐cured NR/(R‐EPDM) blends provided a predominant degree of crosslinking followed by N‐tert‐butyl‐2‐benzothiazyl‐sulphonamide , CBS, and 2‐mercaptobenzothiazol, respectively. J. VINYL ADDIT. TECHNOL., 21:79–88, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号