首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acrylonitrile–butadiene–styrene (ABS)–clay composite and intercalated nanocomposites were prepared by melt processing, using Na‐montmorillonite (MMT), several chemically different organically modified MMT (OMMT) and Na‐laponite clays. The polymer–clay hybrids were characterized by WAXD, TEM, DSC, TGA, tensile, and impact tests. Intercalated nanocomposites are formed with organoclays, a composite is obtained with unmodified MMT, and the nanocomposite based on synthetic laponite is almost exfoliated. An unintercalated nanocomposite is formed by one of the organically modified clays, with similar overall stack dispersion as compared to the intercalated nanocomposites. Tg of ABS is unaffected by incorporation of the silicate filler in its matrix upto 4 wt % loading for different aspect ratios and organic modifications. A significant improvement in the onset of thermal decomposition (40–44°C at 4 wt % organoclay) is seen. The Young's modulus shows improvement, the elongation‐at‐break shows reduction, and the tensile strength shows improvement. Notched and unnotched impact strength of the intercalated MMT nanocomposites is lower as compared to that of ABS matrix. However, laponite and overexchanged organomontmorillonite clay lead to improvement in ductility. For the MMT clays, the Young's modulus (E) correlates with the intercalation change in organoclay interlayer separation (Δd001) as influenced by the chemistry of the modifier. Although ABS‐laponite composites are exfoliated, the intercalated OMMT‐based nanocomposites show greater improvement in modulus. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Poly(lactic acid)/organic montmorillonite (PLA/OMMT) nanocomposites were prepared via twin‐screw extrusion. Montmorillonite (MMT) was firstly organically modified to improve the compatibility between polyester and MMT. The effects of ratio between PLA and OMMT and the addition of polycaprolactone (PCL), as a compatilizer, on the properties of PLA/OMMT nanocomposites were studied. The morphology and the properties of the nanocomposites were characterized by XRD, DSC, and TEM. Using OMMT, the intercalated structure was formed during the extrusion process and the OMMT interlayers space was enlarged. More OMMT content was apt to form thicker structure with more stacked individual silicate layers, which led to lower degree of crystallinity of PLA. It showed that 1 phr OMMT could result in the largest interlayers space and the best crystallization state. PCL can effectively increase the binding force between two phases and improve the order of the nanocomposites. In addition, the annealing after treatment can form regular structure and enhance the thermal properties of nanocomposites. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

3.
The photo‐oxidation behavior at the exposed surfaces of maleated low‐density polyethylene [LDPE poly(ethylene‐co‐butylacrylate‐co‐maleic anhydride) (PEBAMA)] and montmorillonite (MMT) composites was studied using attenuated total reflection Fourier transform infrared spectroscopy, X‐ray diffraction (XRD), transmission electron microscopy (TEM), and mechanical testing. Two different MMT clays were used with the maleated polyethylene, an unmodified clay, MMT, and an organically modified montmorillonite (OMMT) clay which was significantly exfoliated in the composite. The morphologies of sample films were examined by XRD and TEM. The results were explained in terms of the effect of the compatibilizing agent PEBAMA on the clay dispersion. It was found that the OMMT particles were exfoliated in the polymer matrix in the presence of the PEBAMA, whereas the MMT clay particles were agglomerated in this matrix. Both mechanical and spectroscopic analyses showed that the rates of photo oxidative degradation of the LDPE‐PEBAMA–OMMT were higher than those for LDPE and LDPE‐PEBAMA–MMT. The acceleration of the photo‐oxidative degradation for LDPE‐PEBAMA–OMMT is attributed to the effects of the compatibilizer and the organic modifier in the composite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40788.  相似文献   

4.
In this study, the main goal is to obtain montmorillonite nanocomposites of polypropylene (PP). To achieve this goal, a two‐phase study was performed. In the first part of the work, organomodified clay (OMMT) was synthesized and characterized. Octadecyltrimethylammonium bromide (ODTABr) cationic surfactant was added to the clay (Na‐activated montmorillonite, MMT) dispersions in different concentrations in the range of 5 × 10?5–1 × 10?2 mol/L. Rheologic, electrokinetic, and spectral analyses indicated that ODTABr has interacted with MMT at optimum conditions when the concentration was 1 × 10?2 mol/L. In the second part, modified (OMMT) and unmodified (MMT) montmorillonite were used to obtain PP nanocomposites (OMMT/PP and MMT/PP, respectively). The nanocomposites were prepared by melt intercalation where the montmorillonite contents were 1 or 5% (w/w) for each case. The thermal analyses showed that the thermal properties of OMMT/PP nanocomposites were better than MMT/PP, and both of them were also better than pure polymer. Increase in the concentration of MMT (or OMMT) decreased the thermal resistance. Based on the IR absorption intensity changes of regularity and conformational bands, it is found that the content of the helical structure of macromolecular chains has increased with increasing concentrations of both MMT and OMMT in the nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Several types of polybenzoxazine/clay hybrid nanocomposites have been prepared from organically modified montmorillonite (OMMT) and mono- or bifunctional benzoxazine, 3-phenyl-3,4-dihydro-2H-1,3-benzoxazine (Pa) or bis(3-phenyl-3,4-dihydro-2H-1,3-benzoxazinyl) isopropane (Ba), respectively. OMMT was prepared by a cation exchange of montmorillonite (MMT) with ammonium salts of amines such as tyramine, phenylethylamine, aminolauric acid, and dodecyl amine. Polybenzoxazine/clay nanocomposites were prepared by two different methods, namely melt method and solvent method. Melt method employs the blending of benzoxazine and OMMT above the melting point of benzoxazine without solvent. In the solvent method, OMMT was dispersed in an organic solvent and then blended with benzoxazine. XRD measurements of the polybenzoxazine/clay hybrid nanocomposites showed that the blending method and the kind of solvent play crucial roles in the dispersion of OMMT in the polybenzoxazine matrix. DSC showed that the inclusion of any type of OMMT significantly lowered the curing exotherm of benzoxazines. The hybrid nanocomposites exhibited higher Tg values than the pristine resins. Dynamic and isothermal TGA clearly showed that the thermal stability was improved by the inclusion of clay.  相似文献   

6.
Polypropylene/organic‐montmorillonite (PP/OMMT) nanocomposites were prepared via a solid‐phase PP graft (TMPP) with a higher grafting level as the compatibilizer. The effects of the compatibilizer on the structure and properties of PP/OMMT nanocomposites were investigated. The structure of the nanocomposites were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results showed that when the weight ratio of TMPP and OMMT is greater than 1:1, the OMMT can be dispersed in PP matrix uniformly at the nanoscale. The mechanical properties of the nanocomposites reached a maximum when the weight ratio of TMPP and OMMT is 1:1, although more uniform dispersion was achieved at a higher content of TMPP. The mechanical properties of the nanocomposites decrease with the content of TMPP. The crystallization behavior, dynamic rheological property, and thermal stability of the nanocomposites were investigated by differential scanning calorimetry (DSC), dynamic rheological analysis, and thermal gravimetric analysis (TGA), respectively. Due to the synergistic effects of TMPP and OMMT on the crystallization of PP, the crystallization peak temperature of the nanocomposites increased remarkably compared with that of the neat PP. TMPP shows β‐phase nucleating ability and OMMT promotes the development of β‐phase crystallite. The nanocomposites show restricted melt flow and enhanced temperature sensitivity compared with the neat PP. The thermal stability of the nanocomposites is obviously improved compared with that of the neat PP. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers.  相似文献   

7.
PVC/Poly(ε‐caprolactone) (PCL)/organophilic‐montmorillonite (OMMT) and PVC/Polylactide (PLA)/OMMT nanocomposites were prepared by a two‐step process. PCL/OMMT and PLA/OMMT master batches were prepared by melt blending using a two‐roller mill first, and then they were blended with PVC via extrusion. PVC/OMMT nanocomposites were also prepared using a two‐roller mill. Morphology, mechanical properties, and thermal stability were investigated. The formation of exfoliated or intercalated nanocomposites was confirmed by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Only the PVC/PCL/OMMT nanocomposite showed both higher tensile strength and stiffness than unfilled PVC. Atomic force microscopy (AFM) indicated dependency of this behavior not only on the clay dispersion, but also on the adhesion between the OMMT and the polymer matrix. Furthermore, scanning electron microscopy (SEM) showed that the large plastic deformation of the PVC/PCL matrix also contributed to the strength increase of the PVC nanocomposites. The effect of PCL/OMMT on the improvement of the thermal stability of PVC was remarkable while the effect of PLA/OMMT was moderate. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers.  相似文献   

8.
This study investigated the influence of montmorillonite (MMT) content on the mechanical/thermal properties of microcellular injection‐molded polylactide (PLA)/clay nanocomposites. Carbon dioxide was the blowing agent. The PLA/MMT nanocomposites were prepared by twin screw extrusion. The results showed that as MMT content is increased, tensile strength, impact strength, and cell density decrease. This is caused by the speed degradation of PLA due to the addition of MMT. MMT decreases the crystallization temperature but increases the decomposition temperature of the nanocomposites. The XRD results showed that the layer spacing of the clay increases as MMT content increases. TEM pictures showed that the MMT is well dispersed within the PLA matrix. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers.  相似文献   

9.
The aim of the work is to extract, purify, and organically modify montmorillonite (MMT) of Lahad Datu, Sabah bentonite. The octadecylamine treated Sabah MMT (S‐OMMT) (2–8 wt%) was then melt blended with polypropylene (PP) and maleated polypropylene (PPgMAH) (10 wt%) via single screw nanomixer extruder followed by injection molding into test samples to examine the mechanical, thermal, and morphological properties of PP/S‐OMMT nanocomposites. Unmodified Sabah MMT (S‐MMT) and commercial grade MMT (Nanomer 1.30P) filled PP nanocomposites were also characterized for comparison purpose. X‐ray diffraction results showed that the interlayer spacing of S‐MMT increased after organic modification as Fourier transform infra‐red and elemental analysis evidenced the presence of octadecylamine. PP/S‐OMMT nanocomposites showed a better dispersion and strength compared to PP/Nanomer 1.30P nanocomposites due to its smaller MMT platelet size. differential scanning calorimetry and Thermogravimetry analysis revealed that the thermal stability and crystallinity of neat PP improved with the addition of all types of MMT. Dynamic mechanical analyzer showed that PP nanocomposites have higher storage modulus (E′) values than the neat PP over the whole temperature range. The new PP/S‐OMMT nanocomposites showed a comparable performance with PP/Nanomer 1.30P nanocomposites exhibiting promising future applications of S‐MMT in polymer/MMT nanocomposites. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

10.
Hybrid latices of poly(styrene‐co‐butyl acrylate) were synthesized via in situ miniemulsion polymerization in the presence of 3 and 6 wt % organically modified montmorillonite (OMMT). Three different ammonium salts: cetyl trimethyl ammonium chloride (CTAC), alkyl dimethyl benzyl ammonium chloride (Dodigen), and distearyl dimethyl ammonium chloride (Praepagen), were investigated as organic modifiers. Increased affinity for organic liquids was observed after organic modification of the MMT. Stable hybrid latices were obtained even though miniemulsion stability was disturbed to some extent by the presence of the OMMTs during the synthesis. Highly intercalated and exfoliated polymer‐MMT nanocomposites films were produced with good MMT dispersion throughout the polymeric matrix. Materials containing MMT modified with the 16 carbons alkyl chain salt (CTAC) resulted in the largest increments of storage modulus, indicating that single chain quaternary salts provide higher increments on mechanical properties. Films presenting exfoliated structure resulted in the largest increments in the onset temperature of decomposition. For the range of OMMT loading studied, the nanocomposite structure influenced more significantly the thermal stability properties of the hybrid material than did the OMMT loading. The film containing 3 wt % MMT modified with the two 18 carbons alkyl chains salt (Praepagen) provided the highest increment of onset temperature of decomposition. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
This work focuses on the influence of weathering factors—UV radiation, humidity, and temperature on the structure and morphology of poly(vinyl chloride)/montmorillonite (PVC/MMT) nanocomposites obtained by melt blending. It has been observed that organically modified MMT (OMMT) deteriorates the weathering resistance, the thermal behavior, as well as the long‐term stability of PVC. Decomposition of the organic modifier of MMT causes substantial color changes in the PVC nanocomposites as it facilitates the dehydrochlorination process of the polymer. However, the nonmodified MMT provides some stabilization during PVC weathering. The nanocomposites after annealing are characterized by higher glass transition temperature. The increase in heat capacity step (Δcp) during glass transition suggests that in the PVC composites with nonmodified MMT stronger molecular interactions between the polymer and clay platelets occur than in PVC/OMMT nanocomposites. The scanning electron microscopy images on the surface and the cross section show that thermal aging and weathering proceed by different mechanisms. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42090.  相似文献   

12.
Poly(lactic acid)/organo‐montmorillonite (PLA/OMMT) nanocomposites toughened with maleated styrene‐ethylene/butylene‐styrene (SEBS‐g‐MAH) were prepared by melt‐compounding using co‐rotating twin‐screw extruder followed by injection molding. The dispersibility and intercalation/exfoliation of OMMT in PLA was characterized using X‐ray diffraction and transmission electron microscopy (TEM). The mechanical properties of the PLA nanocomposites was investigated by tensile and Izod impact tests. Thermogravimetric analyzer and differential scanning calorimeter were used to study the thermal behaviors of the nanocomposite. The homogenous dispersion of the OMMT silicate layers and SEBS‐g‐MAH encapsulated OMMT layered silicate can be observed from TEM. Impact strength and elongation at break of the PLA nanocomposites was enhanced significantly by the addition of SEBS‐g‐MAH. Thermal stability of the PLA/OMMT nanocomposites was improved in the presence of SEBS‐g‐MAH. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
In this article, Fe‐montmorillonite (Fe‐MMT) was synthesized by hydrothermal method. For the first time, Fe‐MMT was modified by cetyltrimethyl ammonium bromide (CTAB), and poly(methyl methacrylate)(PMMA)/Fe‐MMT nanocomposites were synthesized by emulsion polymerization. Then poly(methyl methacrylate)(PMMA)/natural montmorillonite (Na‐MMT) and PMMA/Fe‐MMT nanocomposites were compared by Fourier transform infrared (FTIR) spectra, X‐ray diffraction (XRD) patterns, transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA). By XRD and TEM, it was found out that the morphology of PMMA/Fe‐MMT nanocomposites was different from that of the PMMA/Fe‐MMT nanocomposites when the content of two types of clay was same in the PMMA matrix. It was possible that the presence of iron may lead to some radical trapping, which enhances intragallery polymerization to be developed to improve layer dispersion in PMMA/Fe‐MMT systems. In TGA curves, the thermal stability and residue at 600°C of PMMA/Fe‐MMT nanocomposites were higher than those of PMMA/Na‐MMT nanocomposites. Those dissimilarities were probably caused by structural Fe ion in the lattice of Fe‐MMT. POLYM. COMPOS., 27:49–54, 2006. © 2005 Society of Plastics Engineers  相似文献   

14.
The influence of granulometry and organic treatment of a Brazilian montmorillonite (MMT) clay on the synthesis and properties of poly(styrene‐con‐butyl acrylate)/layered silicate nanocomposites was studied. Hybrid latexes of poly(styrene‐co‐butyl acrylate)/MMT were synthesized via miniemulsion polymerization using either sodium or organically modified MMT. Five clay granulometries ranging from clay particles smaller than 75 μm to colloidal size were selected. The size of the clay particles was evaluated by specific surface area measurements (BET). Cetyl trimethyl ammonium chloride was used as an organic modifier to enhance the clay compatibility with the monomer phase before polymerization and to improve the clay distribution and dispersion within the polymeric matrix after polymerization. The sodium and organically modified natural clays as well as the composites were characterized by X‐ray diffraction analysis. The latexes were characterized by dynamic light scattering. The mechanical, thermal, and rheological properties of the composites obtained were characterized by dynamical‐mechanical analysis, thermogravimetry, and small amplitude oscillatory shear tests, respectively. The results showed that smaller the size of the organically modified MMT, the higher the degree of exfoliation of nanoplatelets. Hybrid latexes in presence of Na‐MMT resulted in materials with intercalated structures. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Poly (styrene-acrylonitrile) (SAN)/clay nanocomposites have successfully been prepared by melt intercalation method. The hexadecyl triphenyl phosphonium bromide (P16) and cetyl pyridium chloride (CPC) are used to modify the montmorillonite (MMT). The structure and thermal stability property of the organic modified MMT are, respectively characterized by Fourier transfer infrared (FT-IR) spectra, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The results indicate that the cationic surfactants intercalate into the gallery of MMT and the organic-modified MMT by P16 and CPC has higher thermal stability than hexadecyl trimethyl ammonium bromide (C16) modified MMT. The influences of the different organic modified MMT on the structure and properties of the SAN/clay nanocomposites are investigated by XRD, transmission electronic microscopy (TEM), high-resolution electron microscopy (HREM), TGA and dynamic mechanical analysis (DMA), respectively. The results indicate that the SAN cannot intercalate into the interlayers of the pristine MMT and results in microcomposites. However, the dispersion of the organic-modified MMT in the SAN is rather facile and the SAN nanocomposites reveal an intermediate morphology, an intercalated structure with some exfoliation and the presence of small tactoids. The thermal stability and the char residue at 700°C of the SAN/clay nanocomposites have remarkably enhancements compared with pure SAN. DMA measurements show that the silicate clays improve the storage modulus and glass transition temperature (Tg) of the SAN matrix in the nanocomposites.  相似文献   

16.
The polymerizable cationic surfactant, vinylbenzyldimethylethanolammouium chloride (VBDEAC), was synthesized to functionalize montmorillonite (MMT) clay and used to prepare exfoliated polystyrene–clay nanocomposites. The organophilic MMT was prepared by Na+ exchanged montmorillonite and ammonium cations of the VBDEAC in an aqueous medium. Polystyrene–clay nanocomposites were prepared by free‐radical polymerization of the styrene containing intercalated organophilic MMT. Dispersion of the intercalated montmorillonite in the polystyrene matrix determined by X‐ray diffraction reveals that the basal spacing is higher than 17.6 nm. These nanocomposites were characterized by differential scanning calorimetry (DSC), transmission electron micrograph (TEM), thermal gravimetric analysis (TGA), and mechanical properties. The exfoliated nanocomposites have higher thermal stability and better mechanical properties than the pure polystyrene. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1370–1377, 2002  相似文献   

17.
A different series of new polystyrene–clay nanocomposites have been prepared by grafting polymerization of styrene with vinyl‐montmorillonite (MMT) clay. The synthesis was achieved through two steps. The first step is the modification of clay with the vinyl monomers, such as N,N‐dimethyl‐n‐octadecyl‐4‐vinylbenzyl‐ammonium chloride, n‐octadecyl‐4‐vinylbenzyl‐ammonium chloride, triphenyl‐4‐vinylbenzyl‐phosphonium chloride, and tri‐n‐butyl‐4‐vinylbenzyl‐phosphonium chloride. The second step is the polymerization of styrene with different ratios of vinyl‐MMT clay. The materials produced were characterized by different physical and chemical methods: (1) IR spectra, confirming the intercalation of the vinyl‐cation within the clay interlayers; (2) thermogravimetric analysis (TGA), showing higher thermal stability for PS–nanocomposites than polystyrene (PS) and higher thermal stability of nanocomposites with of phosphonium moieties than nanocomposites with ammonium moieties; (3) swelling measurements in different organic solvents, showing that the swelling degree in hydrophobic solvents increases as the clay ratio decreases; (4) X‐ray diffraction (XRD), illustrating that the nanocomposites were exfoliated at up to a 25 wt % of organoclay content; and (5) scanning electron microscopy (SEM), showing a complete dispersion of PS into clay galleries. Also, transmission electron microscopy (TEM) showed nanosize spherical particles of ~ 150–400 nm appearing in the images. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3739–3750, 2007  相似文献   

18.
赛华捷  张玉霞 《中国塑料》2019,33(1):133-146
介绍了蒙脱土(MMT)的一次有机改性和二次有机改性方法,并重点介绍了其在聚乳酸(PLA)中的应用。二次改性能有效改善有机改性蒙脱土(OMMT)在PLA中的分散状况,使之尽可能多地形成剥离结构;在性能改善方面,OMMT的添加能有效改善PLA的结晶性能、拉伸模量和冲击强度、热稳定性、阻透性能以及流变性能等。  相似文献   

19.
This study describes the preparation of polystyrene–clay nanocomposite (PS‐nanocomposite) colloidal particles via free‐radical polymerization in dispersion. Montmorillonite clay (MMT) was pre‐modified using different concentrations of cationic styrene oligomeric (‘PS‐cationic’), and the subsequent modified PS‐MMT was used as stabilizer in the dispersion polymerization of styrene. The main objective of this study was to use the clay platelets as fillers to improve the thermal and mechanical properties of the final PS‐nanocomposites and as steric stabilizers in dispersion polymerization after modification with PS‐cationic. The correlation between the degree of clay modification and the morphology of the colloidal PS particles was investigated. The clay platelets were found to be encapsulated inside PS latex only when the clay surface was rendered highly hydrophobic, and stable polymer latex was obtained. The morphology of PS‐nanocomposite material (after film formation) was found to range from partially exfoliated to intercalated structure depending on the percentage of PS‐MMT loading. The impact of the modified clay loading on the monomer conversion, the polymer molecular weight, the thermal stability and the thermomechanical properties of the final PS‐nanocomposites was determined. Copyright © 2012 Society of Chemical Industry  相似文献   

20.
Poly(lactic acid) (PLA)/organomontmorillonite (OMMT) nanocomposites were prepared by a melt intercalation technique. The effects of OMMT and poly(ethylene glycol) (PEG) on the thermal properties and water absorption behavior of PLA were investigated. The melting temperature and degree of crystallinity were comparable for the PLA and its nanocomposites. The glass transition temperature and crystallization temperature of PLA were decreased by the addition of PEG. X‐ray diffraction results revealed the formation of PLA nanocomposites, as the OMMT was partly intercalated and partly exfoliated. The maximum moisture absorption of PLA was increased in the presence of PEG and the diffusivity of the PLA nanocomposites decreased with increasing concentrations of PEG. However, the activation energy of the nanocomposites increased as the loading of PEG increased. These results indicated that the incorporation of OMMT and PEG enhanced the water‐barrier properties of the PLA. J. VINYL ADDIT. TECHNOL., 2011. © 2011 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号