首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimal Routing for Wireless Mesh Networks With Dynamic Traffic Demand   总被引:1,自引:0,他引:1  
Wireless mesh networks have attracted increasing attention and deployment as a high-performance and low-cost solution to last-mile broadband Internet access. Traffic routing plays a critical role in determining the performance of a wireless mesh network. To investigate the best routing solution, existing work proposes to formulate the mesh network routing problem as an optimization problem. In this problem formulation, traffic demand is usually implicitly assumed as static and known a priori. Contradictorily, recent studies of wireless network traces show that the traffic demand, even being aggregated at access points, is highly dynamic and hard to estimate. Thus, in order to apply the optimization-based routing solution into practice, one must take into account the dynamic and unpredictable nature of wireless traffic demand. This paper presents an integrated framework for wireless mesh network routing under dynamic traffic demand. This framework consists of two important components: traffic estimation and routing optimization. By studying the traces collected at wireless access points, we first present a traffic estimation method which predicts future traffic demand based on its historical data using time-series analysis. This method provides not only the mean value of the future traffic demand estimation but also its statistical distribution. We further investigate the optimal routing strategies for wireless mesh network which take these two forms of traffic demand estimations as inputs. The goal is to balance the traffic load so that minimum congestion will be incurred. This routing objective could be transformed into the throughput optimization problem where the throughput of aggregated flows is maximized subject to fairness constraints that are weighted by the traffic demands. Based on linear programming, we present two routing algorithms which consider the mean value and the statistical distribution of the predicted traffic demands, respectively. The trace-driven simulation study demonstrates that our integrated traffic estimation and routing optimization framework can effectively incorporate the traffic dynamics in mesh network routing.  相似文献   

2.
Routing is a critical component in wireless mesh networks. The inherent shared-medium nature of the wireless mesh networks, however, poses fundamental challenges to the design of effective routing policies that are optimal with respect to the resource utilization. Node churns and traffic fluctuations exacerbate such a problem. In this paper, we propose a novel adaptive routing algorithm for multiple subscribers in wireless mesh networks. We view a mesh network with multiple nodes as an entity that optimizes some global utility function constrained by the underlying MAC layer interference. By solving the optimization problem, the network is driven to an efficient operating point with a certain routing policies for each node. We then use this operating point information to adaptively find better paths, which is able to gear the network towards optimal routing. Further, we take the fluctuations of the network into consideration and thus render our algorithm more robust for a variety of network situations. Simulations demonstrate the efficiency and efficacy of our algorithm.  相似文献   

3.
Wireless mesh networks (WMNs) have emerged as a promising technology that provides low‐cost broadband access to the Internet for fixed and mobile wireless end users. An orthogonal evolution in computer networking has been the rise of peer‐to‐peer (P2P) applications such as P2P data sharing. It is of interest to enable effective P2P data sharing in this type of networks. Conventional P2P data sharing systems are not cognizant of the underlying network topology and therefore suffer from inefficiency. We argue for dual‐layer mesh network architecture with support from wireless mesh routers for P2P applications. The main contribution of this paper is P2PMesh: a topology‐aware system that provides combined architecture and efficient schemes for enabling efficient P2P data sharing in WMNs. The P2PMesh architecture utilizes three schemes: (i) an efficient content lookup that mitigates traffic load imbalance at mesh routers; (ii) an efficient establishment of download paths; and (iii) a data transfer protocol for multi‐hop wireless networks with limited capacity. We note here that the path establishment and data transfer schemes are specific to P2P traffic and that other traffic would use routes determined by the default routing protocol in the WMN. Simulation results suggest that P2PMesh has the potential to improve the performance of P2P applications in a wireless multi‐hop setting; specifically, we focused on data sharing, but other P2P applications can also be supported by this approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, a cross‐layer analytical framework is proposed to analyze the throughput and packet delay of a two‐hop wireless link in wireless mesh network (WMN). It considers the adaptive modulation and coding (AMC) process in physical layer and the traffic queuing process in upper layers, taking into account the traffic distribution changes at the output node of each link due to the AMC process therein. Firstly, we model the wireless fading channel and the corresponding AMC process as a finite state Markov chain (FSMC) serving system. Then, a method is proposed to calculate the steady‐state output traffic of each node. Based on this, we derive a modified queuing FSMC model for the relay to gateway link, which consists of a relayed non‐Poisson traffic and an originated Poisson traffic, thus to evaluate the throughput at the mesh gateway. This analytical framework is verified by numerical simulations, and is easy to extend to multi‐hop links. Furthermore, based on the above proposed cross‐layer framework, we consider the problem of optimal power and bandwidth allocation for QoS‐guaranteed services in a two‐hop wireless link, where the total power and bandwidth resources are both sum‐constrained. Secondly, the practical optimal power allocation algorithm and optimal bandwidth allocation algorithm are presented separately. Then, the problem of joint power and bandwidth allocation is analyzed and an iterative algorithm is proposed to solve the problem in a simple way. Finally, numerical simulations are given to evaluate their performances. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, an orthogonal frequency division multiple access (OFDMA)‐based minimum end‐to‐end delay (MED) distributed routing scheme for mobile backhaul wireless mesh networks is proposed. The proposed scheme selects routing paths based on OFDMA subcarrier synchronization control, subcarrier availability, and delay. In the proposed scheme, OFDMA is used to transmit frames between mesh routers using type‐I hybrid automatic repeat request over multipath Rayleigh fading channels. Compared with other distributed routing algorithms, such as most forward within radius R, farthest neighbor routing, nearest neighbor routing, and nearest with forwarding progress, simulation results show that the proposed MED routing can reduce end‐to‐end delay and support highly reliable routing using only local information of neighbor nodes.  相似文献   

6.
We investigate how multi‐hop routing affects the goodput and throughput performances of IEEE 802.11 distributed coordination function‐based wireless networks compared with direct transmission (single hopping), when medium access control dynamics such as carrier sensing, collisions, retransmissions, and exponential backoff are taken into account under hidden terminal presence. We propose a semi‐Markov chain‐based goodput and throughput model for IEEE 802.11‐based wireless networks, which works accurately with both multi‐hopping and single hopping for different network topologies and over a large range of traffic loads. Results show that, under light traffic, there is little benefit of parallel transmissions and both single‐hop and multi‐hop routing achieve the same end‐to‐end goodput. Under moderate traffic, concurrent transmissions are favorable as multi‐hopping improves the goodput up to 730% with respect to single hopping for dense networks. At heavy traffic, multi‐hopping becomes unstable because of increased packet collisions and network congestion, and single‐hopping achieves higher network layer goodput compared with multi‐hop routing. As for the link layer throughput is concerned, multi‐hopping increases throughput 75 times for large networks, whereas single hopping may become advantageous for small networks. The results point out that the end‐to‐end goodput can be improved by adaptively switching between single hopping and multi‐hopping according to the traffic load and topology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Given a video/audio streaming system installed on a multichannel multiradio wireless mesh network, we are interested in a problem concerning about how to construct a delay‐constrained multicast tree to support concurrent interference‐free transmissions so that the number of serviced mesh clients is maximized. In this paper, we propose a heuristic approach called cross‐layer and load‐oriented (CLLO) algorithm for the problem. On the basis of the cross‐layer design paradigm, our CLLO algorithm can consider application demands, multicast routing, and channel assignment jointly during the formation of a channel‐allocated multicast tree. The experimental results show that the proposed CLLO outperforms the layered approaches in terms of the number of serviced mesh clients and throughputs. This superiority is due to information from higher layers can be used to guide routing selection and channel allocation at the same time. As a result, the CLLO algorithm can explore more solution spaces than the traditional layered approaches. In addition to that, we also propose a channel adjusting procedure to enhance the quality of channel‐allocated multicast trees. According to our simulations, it is proved to be an effective method for improving the performance of the proposed CLLO algorithm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
There has been an escalation in deployment and research of wireless mesh networks by both the business community and academia in the last few years. Their attractive characteristics include low deployment cost, a low‐cost option to extend network coverage and ease of maintenance due to their self‐healing properties. Multiple routes exist between the sender and receiver nodes because of the mesh layout that ensures network connectivity even when node or link failures occur. Recent advances among others include routing metrics, optimum routing, security, scheduling, cross‐layer designs and physical layer techniques. However, there are still challenges in wireless mesh networks as discussed in this paper that need to be addressed. Cross‐layer design allows information from adjacent and non‐adjacent layers to be used at a particular layer for performance improvement. This paper presents a survey of cross‐layer protocol design approaches applied to the IEEE 802.11 standards for wireless multi‐hop mesh networks that have been proposed over the last few years for improved performance. We summarize the current research efforts in cross‐layer protocol design using the IEEE 802.11 standard in identifying unsolved issues that are a promising avenue to further research. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
基于动态规划法的无线Mesh网络QoS路由算法和性能评价   总被引:1,自引:0,他引:1  
宋文  方旭明 《电子与信息学报》2007,29(12):3001-3005
该文针对时延敏感的多媒体业务吞吐率和传输可靠性的考虑,在无线Mesh网络中,引入动态规划和跨层设计方法设计QoS路由算法。在假设的网络模型上,提出了一个新的基于MAC层信息的综合凸规划路由准则,以及基于此实现的路由算法CPRMQS,详细给出了利用动态规划法解决路由优化问题的算法流程和样例分析。最后通过仿真验证了该算法的可行性,并给出了基于DSR扩展协议的性能评价,其中包括吞吐率和延时等性能。  相似文献   

10.
Distributed network utility maximization (NUM) is receiving increasing interests for cross‐layer optimization problems in multihop wireless networks. Traditional distributed NUM algorithms rely heavily on feedback information between different network elements, such as traffic sources and routers. Because of the distinct features of multihop wireless networks such as time‐varying channels and dynamic network topology, the feedback information is usually inaccurate, which represents as a major obstacle for distributed NUM application to wireless networks. The questions to be answered include if distributed NUM algorithm can converge with inaccurate feedback and how to design effective distributed NUM algorithm for wireless networks. In this paper, we first use the infinitesimal perturbation analysis technique to provide an unbiased gradient estimation on the aggregate rate of traffic sources at the routers based on locally available information. On the basis of that, we propose a stochastic approximation algorithm to solve the distributed NUM problem with inaccurate feedback. We then prove that the proposed algorithm can converge to the optimum solution of distributed NUM with perfect feedback under certain conditions. The proposed algorithm is applied to the joint rate and media access control problem for wireless networks. Numerical results demonstrate the convergence of the proposed algorithm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
This paper proposes a code division multiple access (CDMA) time division duplex (TDD) system for wireless multimedia services with traffic unbalance between uplink and downlink. In the proposed system, the number of uplink time slots in a TDD frame differs from that of downlink. Moreover, the difference can be reset by the network operator according to the traffic pattern. We evaluate the performance of the proposed system under multimedia environment using Markov analysis and computer simulation. The results show that the frequency utilization is maximized even when the uplink and downlink traffic volumes are unbalanced. This, in turn, reduces drastically the blocking rate of multimedia calls (connections) in the proposed system compared with that in the traditional CDMA systems where the uplink and downlink use equal bandwidth  相似文献   

12.
Wireless mesh networking (WMN) is an emerging technology for future broadband wireless access. The proliferation of the mobile computing devices that are equipped with cameras and ad hoc communication mode creates the possibility of exchanging real-time data between mobile users in wireless mesh networks. In this paper, we argue for a ring-based multicast routing topology with support from infrastructure nodes for group communications in WMNs. We study the performance of multicast communication over a ring routing topology when 802.11 with RTS/CTS scheme is used at the MAC layer to enable reliable multicast services in WMNs. We propose an algorithm to enhance the IP multicast routing on the ring topology. We show that when mesh routers on a ring topology support group communications by employing our proposed algorithms, a significant performance enhancement is realized. We analytically compute the end-to-end delay on a ring multicast routing topology. Our results show that the end-to-end delay is reduced about 33 %, and the capacity of multicast network (i.e., maximum group size that the ring can serve with QoS guarantees) is increased about 50 % as compared to conventional schemes. We also use our analytical results to develop heuristic algorithms for constructing an efficient ring-based multicast routing topology with QoS guarantees. The proposed algorithms take into account all possible traffic interference when constructing the multicast ring topology. Thus, the constructed ring topology provides QoS guarantees for the multicast traffic and minimizes the cost of group communications in WMNs.  相似文献   

13.
In this paper, we propose a novel robust routing algorithm based on Valiant load-balancing under the model of polyhedral uncertainty (i.e., hose uncertainty model) for WDM (wavelength division multiplexing) mesh networks. Valiant load-balanced robust routing algorithm constructs the stable virtual topology on which any traffic patterns under the hose uncertainty model can be efficiently routed. Considering there are multi-granularity connection requests in WDM mesh networks, we propose the method called hose-model separation to solve the problem for the proposed algorithm. Our goal is to minimize total network cost when constructing the stable virtual topology that assures robust routing for the hose model in WDM mesh networks. A mathematical formulation (integer linear programming, ILP) about Valiant load-balanced robust routing algorithm is presented. Two fast heuristic approaches are also proposed and evaluated. We compare the network throughput of the virtual topology constructed by the proposed algorithm with that of the traditional traffic grooming algorithm under the same total network cost by computer simulation.  相似文献   

14.
High throughput route selection in multi-rate wireless mesh networks   总被引:1,自引:0,他引:1  
Most existing Ad-hoc routing protocols use the shortest path algorithm with a hop count metric to select paths. It is appropriate in single-rate wireless networks, but has a tendency to select paths containing long-distance links that have low data rates and reduced reliability in multi-rate networks. This article introduces a high throughput routing algorithm utilizing the multi-rate capability and some mesh characteristics in wireless fidelity (WiFi) mesh networks. It uses the medium access control (MAC) transmission time as the routing metric, which is estimated by the information passed up from the physical layer. When the proposed algorithm is adopted, the Ad-hoc on-demand distance vector (AODV) routing can be improved as high throughput AODV (HT-AODV). Simulation results show that HT-AODV is capable of establishing a route that has high data-rate, short end-to-end delay and great network throughput.  相似文献   

15.
In mobile distributed applications, such as traffic alert dissemination, dynamic route planning, file sharing, and so on, vehicular ad hoc network (VANET) has emerged as a feasible solution in recent years. However, the performance of the VANET depends on the routing protocol in accord with the delay and throughput requirements. Many of the routing protocols have been extensively studied in the literature. Although there are exemptions, they escalate research challenges in traffic aware routing (TAR) protocol of VANET. This paper introduces the fractional glowworm swarm optimization (FGWSO) for the TAR protocol of VANET in an urban scenario that can identify the optimal path for the vehicle with less traffic density and delay time. The proposed FGWSO searches the optimal routing path based on the fitness function formulated in this paper. Fractional glowworm swarm optimization is the combination of the GWSO and fractional theory. Moreover, exponential weighted moving average is utilized to predict the traffic density and the speed of the vehicle, which is utilized as the major constraints in the fitness function of the optimization algorithm to find the optimal traffic aware path. Simulation of FGWSO shows the significant improvement with a minimal end‐to‐end delay of 6.6395 seconds and distance of 17.3962 m, respectively, in comparison with the other existing routing approaches. The simulation also validates the optimality of the proposed TAR protocol.  相似文献   

16.
Support of Voice over Internet Protocol (VoIP) services in wireless mesh networks requires implementation of efficient policies to support low‐delay data delivery. Multipath routing is typically supported in wireless mesh networks at the network level to provide high fault tolerance and load balancing because links in the proximity of the wireless mesh gateways can be very stressed and overloaded, thus causing scarce performance. As a consequence of using multipath solutions, lower delay and higher throughput can be supported also when a given path is broken because of mobility or bad channel conditions, and alternative routes are available. This can be a relevant improvement especially when assuming that real‐time traffic, such as VoIP, travels into the network. In this paper, we address the problem of Quality of Service (QoS) support in wireless mesh networks and propose a multipath routing strategy that exploits the Mean Opinion Score (MOS) metric to select the most suitable paths for supporting VoIP applications and performing adaptive load balancing among the available paths to equalize network traffic. Performance results assess the effectiveness of the proposed approach when compared with other existing methodologies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
This paper deals with the determination of downlink (DL) and uplink (UL) channel split ratio for time division duplex (TDD) based long term evolution (LTE) networks. In a TDD system, UL and DL transmissions are carried out at different time intervals, but share the same frequency band. The TDD framing in LTE is adaptive in the sense that the DL to UL bandwidth ratio may vary with time. This paper proposes an adaptive split ratio (ASR) scheme for LTE networks to automatically adjust the bandwidth ratio of DL to UL, according to the current traffic profile, wireless interference, and transport layer parameters. This provides the maximum aggregate throughput in LTE systems. The performance analysis shows that ASR scheme outperforms static allocation in terms of higher aggregate throughput and better adaptively to network dynamics. Further, it is also observed that the ASR scheme performs well for LTE, compared to worldwide interoperability for microwave access (WiMAX) system.  相似文献   

18.
Although limiting the number of backhauls, specifically chosen transit access points (TAPs) that forward traffic from other TAPs, reduces the overall costs of a wireless mesh network (WMN), an egress bottleneck is induced, which aggregates traffic and limits the bandwidth. To avoid such problems while working to minimize budgetary expenses, we balanced traffic flow on ‘to‐be‐determined’ backhauls and adjacent links, a mixed nonlinear‐and integer‐programming problem that minimizes the aggregated flow subject to budget, backhaul assignment, top‐level load‐balanced routing, and link capacity constraints. Two algorithms are proposed, weighted backhaul assignment (WBA) and greedy load‐balanced routing (GLBR), that operate in conjunction with Lagrangean relaxation (LR), used for constructing LR‐based heuristics and also as a means of quantification and evaluation of the proposed algorithms. Experiment results show that the proposed algorithms achieve near‐optimization, outperforming related solutions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
In Wireless mesh networks mesh access points (MAPs) forward traffic wirelessly towards users or Internet gateways. A user device usually connects to the MAP with the strongest signal, as such MAP should guarantee the best quality of service. However, this connection policy may lead to: (i) unfairness towards users that are distant from gateways; (ii) uneven distribution of users to MAPs; and (iii) inefficient use of network paths. We present a new model and solution approach to the problem of assigning users to MAPs and routing the data within the mesh network with the objective of providing max–min fair throughput. The problem is formulated as a mixed‐integer linear programming problem (MILP). Because of the inherent complexity of the problem, real size instances cannot be solved to optimality within the time limits for online optimization. Therefore, we propose an original heuristic solution algorithm for the resulting MILP. Both numerical comparisons and network simulations demonstrate the effectiveness of the proposed heuristic. For random networks, the heuristic achieves 98% of the optimal solution. Network simulations show that in medium‐sized networks, the number of users with at least 1Mbit/s minimum end‐to‐end rate increases by 550% when compared with the classical signal‐strength based association. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The optimal and distributed provisioning of high throughput in mesh networks is known as a fundamental but hard problem. The situation is exacerbated in a wireless setting due to the interference among local wireless transmissions. In this paper, we propose a cross-layer optimization framework for throughput maximization in wireless mesh networks, in which the data routing problem and the wireless medium contention problem are jointly optimized for multihop multicast. We show that the throughput maximization problem can be decomposed into two subproblems: a data routing subproblem at the network layer, and a power control subproblem at the physical layer with a set of Lagrangian dual variables coordinating interlayer coupling. Various effective solutions are discussed for each subproblem. We emphasize the network coding technique for multicast routing and a game theoretic method for interference management, for which efficient and distributed solutions are derived and illustrated. Finally, we show that the proposed framework can be extended to take into account physical-layer wireless multicast in mesh networks  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号