首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MicroRNAs (miRNAs) can be secreted into body fluids and have thus been reported as a new type of cancer biomarker. This study aimed to determine whether urinary miRNAs act as noninvasive biomarkers for diagnosing bladder cancer. Small RNA profiles from urine were generated for 10 patients with bladder cancer and 10 healthy controls by using next-generation sequencing. We identified 50 urinary miRNAs that were differentially expressed in bladder cancer compared with controls, comprising 44 upregulated and six downregulated miRNAs. Pathway enrichment analysis revealed that the biological role of these differentially expressed miRNAs might be involved in cancer-associated signaling pathways. Further analysis of the public database revealed that let-7b-5p, miR-149-5p, miR-146a-5p, miR-193a-5p, and miR-423-5p were significantly increased in bladder cancer compared with corresponding adjacent normal tissues. Furthermore, high miR-149-5p and miR-193a-5p expression was significantly correlated with poor overall survival in patients with bladder cancer. The qRT-PCR approach revealed that the expression levels of let-7b-5p, miR-149-5p, miR-146a-5p and miR-423-5p were significantly increased in the urine of patients with bladder cancer compared with those of controls. Although our results indicated that urinary miRNAs are promising biomarkers for diagnosing bladder cancer, this must be validated in larger cohorts in the future.  相似文献   

2.
Exosomal microRNAs (EXO-miRNAs) are promising non-invasive diagnostic biomarkers for cardiovascular disease. Heart failure with preserved ejection fraction (HFpEF) is a poorly understood cardiovascular complication of diabetes mellitus (DM). Little is known about whether EXO-miRNAs can be used as biomarkers for HFpEF in DM. We aimed to investigate the relationship between EXO-miRNAs and HFpEF in STZ-induced diabetic rats. We prepared STZ-induced diabetic rats exhibiting a type 1 DM phenotype with low body weight, hyperglycemia, hyperlipidemia and hypoinsulinemia. Histological sections confirmed atrophy and fibrosis of the heart, with collagen accumulation representing diabetic cardiomyopathy. Significant decreases in end-diastolic volume, stroke volume, stroke work, end-systolic elastance and cardiac output indicated impaired cardiac contractility, as well as mRNA conversion of two isoforms of myosin heavy chain (α-MHC and β-MHC) and increased atrial natriuretic factor (ANF) mRNA indicating heart failure, were consistent with the features of HFpEF. In diabetic HFpEF rats, we examined a selected panel of 12 circulating miRNAs associated with HF (miR-1-3p, miR-21-5p, miR-29a-5p, miR-30d-5p, miR-34a-5p, miR-126a-5p, miR-143-3p, miR-145-5p, miR-195-5p, miR-206-3p, miR-320-3p and miR-378-3p). Although they were all expressed at significantly lower levels in the heart compared to non-diabetic controls, only six miRNAs (miR-21-5p, miR-30d-5p, miR-126a-5p, miR-206-3p, miR-320-3p and miR-378-3p) were also reduced in exosomal content, while one miRNA (miR-34a-5p) was upregulated. Similarly, although all miRNAs were correlated with reduced cardiac output as a measure of cardiovascular performance, only three miRNAs (miR-30d-5p, miR-126a-5p and miR-378-3p) were correlated in exosomal content. We found that miR-30d-5p and miR-126a-5p remained consistently correlated with significant reductions in exosomal expression, cardiac expression and cardiac output. Our findings support their release from the heart and association with diabetic HFpEF. We propose that these two EXO-miRNAs may be important for the development of diagnostic tools for diabetic HFpEF.  相似文献   

3.
This study explored the expression of several miRNAs reported to be deregulated in age-related macular degeneration (AMD). Total RNA was isolated from sera from patients with dry AMD (n = 12), wet AMD (n = 14), and controls (n = 10). Forty-two previously investigated miRNAs were selected based on published data and their role in AMD pathogenesis, such as angiogenic and inflammatory effects, and were co-analysed using a miRCURY LNA miRNA SYBR® Green PCR kit via quantitative real-time polymerase chain reaction (qRT-PCR) to validate their presence. Unsupervised hierarchical clustering indicated that AMD serum specimens have a different miRNA profile to healthy controls. We successfully validated the differentially regulated miRNAs in serum from AMD patients versus controls. Eight miRNAs (hsa-let-7a-5p, hsa-let-7d-5p, hsa-miR-23a-3p, hsa-miR-301a-3p, hsa-miR-361-5p, hsa-miR-27b-3p, hsa-miR-874-3p, hsa-miR-19b-1-5p) showed higher expression in the serum of dry AMD patients than wet AMD patients and compared with healthy controls. Increased quantities of certain miRNAs in the serum of AMD patients indicate that these miRNAs could potentially serve as diagnostic AMD biomarkers and might be used as future AMD treatment targets. The discovery of significant serum miRNA biomarkers in AMD patients would provide an easy screening tool for at-risk populations.  相似文献   

4.
Atherosclerotic cardiovascular diseases (ASCVD) are the leading cause of morbidity and mortality in Western societies. Statins are the first-choice therapy for dislipidemias and are considered the cornerstone of ASCVD. Statin-associated muscle symptoms are the main reason for dropout of this treatment. There is an urgent need to identify new biomarkers with discriminative precision for diagnosing intolerance to statins (SI) in patients. MicroRNAs (miRNAs) have emerged as evolutionarily conserved molecules that serve as reliable biomarkers and regulators of multiple cellular events in cardiovascular diseases. In the current study, we evaluated plasma miRNAs as potential biomarkers to discriminate between the SI vs. non-statin intolerant (NSI) population. It is a multicenter, prospective, case-control study. A total of 179 differentially expressed circulating miRNAs were screened in two cardiovascular risk patient cohorts (high and very high risk): (i) NSI (n = 10); (ii) SI (n = 10). Ten miRNAs were identified as being overexpressed in plasma and validated in the plasma of NSI (n = 45) and SI (n = 39). Let-7c-5p, let-7d-5p, let-7f-5p, miR-376a-3p and miR-376c-3p were overexpressed in the plasma of SI patients. The receiver operating characteristic curve analysis supported the discriminative potential of the diagnosis. We propose a three-miRNA predictive fingerprint (let-7f, miR-376a-3p and miR-376c-3p) and several clinical variables (non-HDLc and years of dyslipidemia) for SI discrimination; this model achieves sensitivity, specificity and area under the receiver operating characteristic curve (AUC) of 83.67%, 88.57 and 89.10, respectively. In clinical practice, this set of miRNAs combined with clinical variables may discriminate between SI vs. NSI subjects. This multiparametric model may arise as a potential diagnostic biomarker with clinical value.  相似文献   

5.
New biomarkers are needed to further stratify the risk of malignancy in intraductal papillary mucinous neoplasm (IPMN). Although microRNAs (miRNAs) are expected to be stable biomarkers, they can vary owing to a lack of definite internal controls. To identify universal biomarkers for invasive IPMN, we performed miRNA sequencing using tumor-normal paired samples. A total of 19 resected tissues and 13 pancreatic juice samples from 32 IPMN patients were analyzed for miRNA expression by next-generation sequencing with a two-step normalization of miRNA sequence data. The miRNAs involved in IPMN associated with invasive carcinoma were identified from this tissue analysis and further verified with the pancreatic juice samples. From the tumor-normal paired tissue analysis of the expression levels of 2792 miRNAs, 20 upregulated and 17 downregulated miRNAs were identified. In IPMN associated with invasive carcinoma (INV), miR-10a-5p and miR-221-3p were upregulated and miR-148a-3p was downregulated when compared with noninvasive IPMN. When these findings were further validated with pancreatic juice samples, miR-10a-5p was found to be elevated in INV (p = 0.002). Therefore, three differentially expressed miRNAs were identified in tissues with INV, and the expression of miR-10a-5p was also elevated in pancreatic juice samples with INV. MiR-10a-5p is a promising additional biomarker for invasive IPMN.  相似文献   

6.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare disease for which there are currently no validated outcome measures for assessing therapeutic intervention efficacy. The aim of this study was to identify a plasma and/or serum microRNA (miRNA) biomarker panel for MNGIE. Sixty-five patients and 65 age and sex matched healthy controls were recruited and assigned to one of four study phases: (i) discovery for sample size determination; (ii) candidate screening; (iii) candidate validation; and (iv) verifying the performance of the validated miRNA panel in four patients treated with erythrocyte-encapsulated thymidine phosphorylase (EE-TP), an enzyme replacement under development for MNGIE. Quantitative PCR (qPCR) was used to profile miRNAs in serum and/or plasma samples collected for the discovery, validation and performance phases, and next generation sequencing (NGS) analysis was applied to serum samples assigned to the candidate screening phase. Forty-one differentially expressed candidate miRNAs were identified in the sera of patients (p < 0.05, log2 fold change > 1). The validation cohort revealed that of those, 27 miRNAs were upregulated in plasma and three miRNAs were upregulated in sera (p < 0.05). Through binary logistic regression analyses, five plasma miRNAs (miR-192-5p, miR-193a-5p, miR-194-5p, miR-215-5p and miR-34a-5p) and three serum miRNAs (miR-192-5p, miR-194-5p and miR-34a-5p) were shown to robustly distinguish MNGIE from healthy controls. Reduced longitudinal miRNA expression of miR-34a-5p was observed in all four patients treated with EE-TP and coincided with biochemical and clinical improvements. We recommend the inclusion of the plasma exploratory miRNA biomarker panel in future clinical trials of investigational therapies for MNGIE; it may have prognostic value for assessing clinical status.  相似文献   

7.
Liver fibrosis is characterized by the accumulation of extracellular matrix (ECM) resulting in the formation of fibrous scars. In the clinic, liver biopsies are the standard diagnostic method despite the potential for clinical complications. miRNAs are single-stranded, non-coding RNAs that can be detected in tissues, body fluids and cultured cells. The regulation of many miRNAs has been linked to tissue damage, including liver fibrosis in patients, resulting in aberrant miRNA expression/release. Experimental evidence also suggests that miRNAs are regulated in a similar manner in vitro and could thus serve as translational in vitro–in vivo biomarkers. In this work, we set out to identify and characterize biomarkers for liver fibrosis that could be used in vitro and clinically for research and diagnostic purposes. We focused on miRNAs released from hepatic 3D cultures exposed to methotrexate (MTX), which causes fibrosis, and acetaminophen (APAP), an acute hepatotoxicant with no clinically relevant association to liver fibrosis. Using a 3D in vitro model, we corroborated compound-specific responses as we show MTX induced a fibrotic response, and APAP did not. Performing miRNA-seq of cell culture supernatants, we identified potential miRNA biomarkers (miR-199a-5p, miR-214-3p, niRNA-125a-5p and miR-99b-5p) that were associated with a fibrotic phenotype and not with hepatocellular damage alone. Moreover, transfection of HSC with miR-199a-5p led to decreased expression of caveolin-1 and increased α-SMA expression, suggesting its role in HSC activation. In conclusion, we propose that extracellular miR-214-3p, miR-99b-5p, miR-125a-5p and specifically miR-199a-5p could contribute towards a panel of miRNAs for identifying liver fibrosis and that miR-199a-5p, miR-214-3p and miR-99b-5p are promoters of HSC activation.  相似文献   

8.
Biomarkers for predicting individual response to radiation and for dose verification are needed to improve radiotherapy. A biomarker should optimally show signal fidelity, meaning that its level is stable and proportional to the absorbed dose. miRNA levels in human blood serum were suggested as promising biomarkers. The aim of the present investigation was to test the miRNA biomarker in leukocytes of breast cancer patients undergoing external beam radiotherapy. Leukocytes were isolated from blood samples collected prior to exposure (control); on the day when a total dose of 2 Gy, 10 Gy, or 20 Gy was reached; and one month after therapy ended (46–50 Gy in total). RNA sequencing was performed and univariate analysis was used to analyse the effect of the radiation dose on the expression of single miRNAs. To check if combinations of miRNAs can predict absorbed dose, a multinomial logistic regression model was built using a training set from eight patients (representing 40 samples) and a validation set with samples from the remaining eight patients (15 samples). Finally, Broadside, an explorative interaction mining tool, was used to extract sets of interacting miRNAs. The most prominently increased miRNA was miR-744-5p, followed by miR-4461, miR-34a-5p, miR-6513-5p, miR-1246, and miR-454-3p. Decreased miRNAs were miR-3065-3p, miR-103a-2-5p, miR-30b-3p, and miR-5690. Generally, most miRNAs showed a relatively strong inter-individual variability and different temporal patterns over the course of radiotherapy. In conclusion, miR-744-5p shows promise as a stable miRNA marker, but most tested miRNAs displayed individual signal variability which, at least in this setting, may exclude them as sensitive biomarkers of radiation response.  相似文献   

9.
Abdominal aortic aneurysm (AAA) is an inflammatory disease associated with marked changes in the cellular composition of the aortic wall. This study aims to identify microRNA (miRNA) expression in aneurysmal inflammatory cells isolated by laser microdissection from human tissue samples. The distribution of inflammatory cells (neutrophils, B and T lymphocytes, mast cells) was evaluated in human AAA biopsies. We observed in half of the samples that adventitial tertiary lymphoid organs (ATLOs) with a thickness from 0.5 to 2 mm were located exclusively in the adventitia. Out of the 850 miRNA that were screened by microarray in isolated ATLOs (n = 2), 164 miRNAs were detected in ATLOs. The three miRNAs (miR-15a-3p, miR-30a-5p and miR-489-3p) with the highest expression levels were chosen and their expression quantified by RT-PCR in isolated ATLOs (n = 4), M1 (n = 2) and M2 macrophages (n = 2) and entire aneurysmal biopsies (n = 3). Except for the miR-30a-5p, a similar modulation was found in ATLOs and the two subtypes of macrophages. The modulated miRNAs were then evaluated in the plasma of AAA patients for their potential as AAA biomarkers. Our data emphasize the potential of miR-15a-3p and miR-30a-5p as biomarkers of AAA but also as triggers of ATLO evolution. Further investigations will be required to evaluate their targets in order to better understand AAA pathophysiology.  相似文献   

10.
11.
Myasthenia gravis (MG) is an autoimmune condition related to autoantibodies against certain proteins in the postsynaptic membranes in the neuromuscular junction. This disorder has a multifactorial inheritance. The connection between environmental and genetic factors can be established by epigenetic factors, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). XLOC_003810, SNHG16, IFNG-AS1, and MALAT-1 are among the lncRNAs with a possible role in the pathoetiology of MG. Moreover, miR-150-5p, miR-155, miR-146a-5p, miR-20b, miR-21-5p, miR-126, let-7a-5p, and let-7f-5p are among miRNAs whose roles in the pathogenesis of MG has been assessed. In the current review, we summarize the impact of miRNAs and lncRNAs in the development or progression of MG.  相似文献   

12.
Lung cancer remains the leading cause of cancer related mortality worldwide. We aimed to test whether a simple blood biomarker (extracellular vesicle miRNAs) can discriminate between cases with and without lung cancer. Methods: plasma extracellular vesicles (EVs) were isolated from four cohorts (n = 20 in each): healthy non-smokers, healthy smokers, lung cancer, and stable COPD participants. EV miRNA expression was evaluated using the miRCURY LNA miRNA Serum/Plasma assay for 179 specific targets. Significantly dysregulated miRNAs were assessed for discriminatory power using ROC curve analysis. Results: 15 miRNAs were differentially expressed between lung cancer and healthy non-smoking participants, with the greatest single miRNA being miR-205-5p (AUC 0.850), improving to AUC 0.993 in combination with miR-199a-5p. Moreover, 26 miRNAs were significantly dysregulated between lung cancer and healthy smoking participants, with the greatest single miRNA being miR-497-5p (AUC 0.873), improving to AUC 0.953 in combination with miR-22-5p; 14 miRNAs were significantly dysregulated between lung cancer and stable COPD participants, with the greatest single miRNA being miR-27a-3p (AUC 0.803), with two other miRNAs (miR-106b-3p and miR-361-5p) further improving discriminatory power (AUC 0.870). Conclusion: this case control study suggests miRNAs in EVs from plasma holds key biological information specific for lung cancer and warrants further prospective assessment.  相似文献   

13.
Ovarian cancer is the most lethal gynecological malignancy. The high mortality results from late diagnosis and the development of drug resistance. Drug resistance results from changes in the expression of different drug-resistance genes that may be regulated miRNA. The main aim of our study was to detect changes in miRNA expression levels in two cisplatin (CIS) and two paclitaxel (PAC)—resistant variants of the A2780 drug-sensitive ovarian cancer cell line—by miRNA microarray. The next goal was to identify miRNAs responsible for the regulation of drug-resistance genes. We observed changes in the expression of 46 miRNA that may be related to drug resistance. The overexpression of miR-125b-5p, miR-99a-5p, miR-296-3p, and miR-887-3p and downregulation of miR-218-5p, miR-221-3p, and miR-222-3p was observed in both CIS-resistant cell lines. In both PAC-resistant cell lines, we observed the upregulation of miR-221-3p, miR-222-3p, and miR-4485, and decreased expression of miR-551b-3p, miR-551b-5p, and miR-218-5p. Analysis of targets suggest that expression of important drug-resistant genes like protein Tyrosine Phosphatase Receptor Type K (PTPRK), receptor tyrosine kinase—EPHA7, Semaphorin 3A (SEMA3A), or the ATP-binding cassette subfamily B member 1 gene (ABCB1) can be regulated by miRNA.  相似文献   

14.
Alteration in expression of miRNAs can cause various malignant changes and the metastatic process. Our aim was to identify the miRNAs involved in cervical squamous cell carcinoma (SqCC) and metastasis, and to test their utility as indicators of metastasis and survival. Using microarray technology, we performed miRNA expression profiling on primary cervical SqCC tissue (n = 6) compared with normal control (NC) tissue and compared SqCC that had (SqC-M; n = 3) and had not (SqC-NM; n = 3) metastasized. Four miRNAs were selected for validation by qRT-PCR on 29 SqC-NM and 27 SqC-M samples, and nine metastatic lesions (ML-SqC), from a total of 56 patients. Correlation of miRNA expression and clinicopathological parameters was analyzed to evaluate the clinical impact of candidate miRNAs. We found 40 miRNAs differentially altered in cervical SqCC tissue: 21 miRNAs were upregulated and 19 were downregulated (≥2-fold, p < 0.05). Eight were differentially altered in SqC-M compared with SqC-NM samples: four were upregulated (miR-494, miR-92a-3p, miR-205-5p, and miR-221-3p), and four were downregulated (miR-574-3p, miR-4769-3p, miR-1281, and miR-1825) (≥1.5-fold, p < 0.05). MiR-22-3p might be a metastamiR, which was gradually further downregulated in SqC-NM > SqC-M > ML-SqC. Downregulation of miR-30e-5p significantly correlated with high stage, lymph node metastasis, and low survival rate, suggesting an independent poor prognostic factor.  相似文献   

15.
Noninvasive, affordable circulating biomarkers for difficult-to-diagnose mild traumatic brain injury (mTBI) are an unmet medical need. Although blood microRNA (miRNA) levels are reportedly altered after traumatic brain injury (TBI), their diagnostic potential for mTBI remains inconclusive. We hypothesized that acutely altered plasma miRNAs could serve as diagnostic biomarkers both in the lateral fluid percussion injury (FPI) model and clinical mTBI. We performed plasma small RNA-sequencing from adult male Sprague–Dawley rats (n = 31) at 2 days post-TBI, followed by polymerase chain reaction (PCR)-based validation of selected candidates. miR-9a-3p, miR-136-3p, and miR-434-3p were identified as the most promising candidates at 2 days after lateral FPI. Digital droplet PCR (ddPCR) revealed 4.2-, 2.8-, and 4.6-fold elevations in miR-9a-3p, miR-136-3p, and miR-434-3p levels (p < 0.01 for all), respectively, distinguishing rats with mTBI from naïve rats with 100% sensitivity and specificity. DdPCR further identified a subpopulation of mTBI patients with plasma miR-9-3p (n = 7/15) and miR-136-3p (n = 5/15) levels higher than one standard deviation above the control mean at <2 days postinjury. In sTBI patients, plasma miR-9-3p levels were 6.5- and 9.2-fold in comparison to the mTBI and control groups, respectively. Thus, plasma miR-9-3p and miR-136-3p were identified as promising biomarker candidates for mTBI requiring further evaluation in a larger patient population.  相似文献   

16.
Autoantibodies-abzymes hydrolyzing DNA, myelin basic protein, and oligosaccharides have been revealed in the sera of patients with multiple sclerosis (MS). In MS, specific microRNAs are found in blood and cerebrospinal fluid, which are characterized by increased expression. Autoantibodies, specifically hydrolyzing four different miRNAs, were first detected in the blood of schizophrenia patients. Here, we present the first evidence that 23 IgG antibodies of MS patients effectively recognize and hydrolyze four neuroregulatory miRNAs (miR-137, miR-9-5p, miR-219-2-3p, and miR-219-5p) and four immunoregulatory miRNAs (miR-21-3p, miR-146a-3p, miR-155-5p, and miR-326). Several known criteria were checked to show that the recognition and hydrolysis of miRNAs is an intrinsic property of MS IgGs. The hydrolysis of all miRNAs is mostly site-specific. The major and moderate sites of the hydrolysis of each miRNA for most of the IgG preparations coincided; however, some of them showed other specific sites of splitting. Several individual IgGs hydrolyzed some miRNAs almost nonspecifically at nearly all internucleoside bonds or demonstrated a combination of site-specific and nonspecific splitting. Maximum average relative activity (RA) was observed in the hydrolysis of miR-155-5p for IgGs of patients of two types of MS—clinically isolated syndrome and relapsing-remitting MS—but was also high for patients with primary progressive and secondary progressive MS. Differences between RAs of IgGs of four groups of MS patients and healthy donors were statistically significant (p < 0.015). There was a tendency of decreasing efficiency of hydrolysis of all eight miRNAs during remission compared with the exacerbation of the disease.  相似文献   

17.
18.
Epithelial ovarian cancer has the highest mortality among all gynecological malignancies. The main reasons for high mortality are late diagnosis and development of resistance to chemotherapy. Resistance to chemotherapeutic drugs can result from altered expression of drug-resistance genes regulated by miRNA. The main goal of our study was to detect differences in miRNA expression levels in two doxorubicin (DOX)- and two topotecan (TOP)-resistant variants of the A2780 drug-sensitive ovarian cancer cell line by miRNA microarray. The next aim was to recognize miRNAs as factors responsible for the regulation of drug-resistance genes. We observed altered expression of 28 miRNA that may be related to drug resistance. The upregulation of miR-125b-5p and miR-935 and downregulation of miR-218-5p was observed in both DOX-resistant cell lines. In both TOP-resistant cell lines, we noted the overexpression of miR-99a-5p, miR-100-5p, miR-125b-5p, and miR-125b-2-3p and decreased expression of miR-551b-3p, miR-551b-5p, and miR-383-5p. Analysis of the targets suggested that expression of important drug-resistant genes such as the collagen type I alpha 2 chain (COL1A2), protein Tyrosine Phosphatase Receptor Type K (PTPRK), receptor tyrosine kinase—EPHA7, Roundabout Guidance Receptor 2 (ROBO2), myristoylated alanine-rich C-kinase substrate (MARCK), and the ATP-binding cassette subfamily G member 2 (ABCG2) can be regulated by miRNA.  相似文献   

19.
African American (AA) men exhibit 1.6-fold higher prostate cancer (PCa) incidence and 2.4-fold higher mortality rates compared to European American (EA) men. In addition to socioeconomic factors, emerging evidence suggests that intrinsic biological differences may explain part of PCa disparities. In this study, we applied microRNA (miRNA)-driven bioinformatics to evaluate whether differential miRNA-mRNA regulatory networks play a role in promoting the AA PCa disparities. 10 differentially expressed miRNAs were imported to mirPath V.3 algorithm, leading to identification of 58 signaling pathways differentially regulated in AA PCa versus EA PCa. Among these pathways, we particularly focused on mTOR and VEGF signaling, where we identified 5 reciprocal miRNA-mRNA pairings: miR-34a-5p/HIF1A, miR-34a-5p/PIK3CB, miR-34a-5p/IGFBP2, miR-99b-5p/MTOR and miR-96-5p/MAPKAPK2 in AA PCa versus EA PCa. RT-qPCR validation confirmed that miR-34a-5p, miR-99b-5p and MAPKAPK2 were downregulated, while miR-96-5p, IGFBP2, HIF1A, PIK3CB and MTOR were upregulated in AA PCa versus EA PCa cells. Transfection of miRNA mimics/antagomir followed by RT-qPCR and Western blot analysis further verified that IGFBP2, HIF1A and PIK3CB are negatively regulated by miR-34a-5p, whereas MTOR and MAPKAPK2 are negatively regulated by miR-99b-5p and miR-96-5p, respectively, at mRNA and protein levels. Targeting reciprocal pairings by miR-34a-5p mimic, miR-99b-5p mimic or miR-96-5p antagomir downregulates HIF1α, PI3Kβ, mTOR, IGFBP2 but upregulates MAPKAPK2, subsequently reducing cell proliferation and sensitizing docetaxel-induced cytotoxicity in PCa cells. These results suggest that miRNA-mRNA regulatory network plays a critical role in AA PCa disparities, and targeting these core miRNA-mRNA pairings may reduce PCa aggressiveness and overcome the chemoresistance in AA patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号