首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four binary polymer blends containing poly [ethylene‐co‐(acrylic acid)] (PEAA) as one component, and poly(4‐vinyl phenol‐co‐2‐hydroxy ethyl methacrylate) (P4VPh‐co‐2HEMA) or poly(2‐ethyl‐2‐oxazoline) (PEOx) or poly(vinyl acetate‐co‐vinyl alcohol) (PVAc‐co‐VA) or poly (vinylpyrrolidone‐co‐vinyl acetate) (PVP‐co‐VAc) as the other component were prepared and used as a matrix of a series of composite materials. These binary mixtures were either partially or completely miscible within the composition range studied and were characterized by differential scanning calorimetry (DSC) and Fourier transformed infrared spectroscopy (FTIR). Carbon nanotubes (CNTs) were prepared by a thermal treatment of polyester synthesized through the chemical reaction between ethylene glycol and citric acid over an alumina boat. High resolution transmission electron microscopy (HRTEM) was used to characterize the synthesized CNTs. Films of composite materials containing CNTs were obtained after evaporation of the solvent used to prepare solutions of the four types of binary polymer blends. Young's moduli of the composites were obtained by thermomechanical analysis at room temperature. Only one glass transition temperature was detected for several compositions on both binary blends and the composite material matrices. Evidence of hydrogen bond formation was recorded for both miscible blends and composite materials. The degree of crystallinity and Young's moduli of the CNT‐polymer composites increased compared to the single polymer blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

2.
3.
A set of amorphous poly[ethylene‐co‐(1,4‐cyclohexanedimethylene terephthalate)] (PECT) copolymers containing 25 and 30% of 1,4‐cyclohexane dimethylene (CHDM) units and small amounts of branching agent pentaerythritol (PER) is investigated. The level of long chain branching was estimated by analyzing the positive deviation from law. Branching also produced melt elasticity enhancement which is desirable for certain processing methods. Capillary extrusion experiments at 180 °C generated flow‐induced crystallization in PECT containing 25% of CHDM. Crystallization increased with the amount of PER added, which was explained by the favorable effect of branching to increase elongational rate at the entrance of the capillary. Linear and branched PECTs containing 30% of CHDM did not crystallize.

  相似文献   


4.
Blend systems of polystyrene‐block‐poly(ethylene‐co‐(ethylene‐propylene))‐block‐polystyrene (SEEPS) triblock copolymer with three types of hydrocarbon oil of different molecular weight were prepared. The E″ curves as a function of temperature exhibited two peaks; one peak at low temperature (? ?50°C), arising from the glass transition of the poly[ethylene‐co‐(ethylene‐propylene)] (PEEP) phase and a high temperature peak (? 100°C), arising from the glass transition of the polystyrene (PS) phase. The glass transition temperature (Tg) of the PEEP phase shifted to lower temperature with increasing oil content. The shifted Tg depended on the types of oil and was lower for the low molecular weight oil. The Tg of PS phase of the present blend system, were found to be constant and independent of the oil content, when molecular weight of the oil is high. However, for the lower molecular weight oil, the Tg of the PS phase also shifted to lower temperatures. This fact indicates that the oil of high molecular weight is merely dissolved in the PS phase. The E′ at (75°C, at which temperature both of PEEP and PS phases are in glassy state, was found to be independent of oil content. In contrast, at 25°C, at which temperature the PEEP phase is in rubbery state, the E′ decreased sharply with increasing oil content. This result indicates that the hydrocarbon oil was a selective solvent in the PEEP phase. It mainly dissolved in the PEEP phase, although slightly dissolved into the PS phase as well, when molecular weight of oil is low. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
EVOH‐g‐PCL were prepared by a solvent‐free reactive extrusion process using a co‐rotating twin screw extruder. Kinetic simulations were made of selected reaction conditions at 185 °C. Changes in the screw rotation rate resulted in evolution of the residence time distribution and slightly changed the monomer conversion. An increase of the [OH]0/[Cl]0 ratio made the reactive system more viscous and decreased the overall pumping capacities of the extruder. Increase of the mean residence time, combined with a positive kinetic effect of [OH]0 increase, leaded to an important increase in conversion. For all the conducted experiments, equivalent distribution dispersions and good agreements between calculated conversion and those measured were obtained. An increase in temperature from 185 to 200 °C resulted in total conversion.

  相似文献   


6.
The first reported use of two‐dimensional mesh thermoplastic fibers in an epoxy matrix for mendable composites is presented, yielding 100% restoration of GIC, failure energy, and peak loads over repeated damage‐healing cycles. SEM imaging and EDS mapping showed different surface structures between CFRPp and CFRPf and confirmed strength recoveries were attained by delivery of EMAA to the fracture plane which enabled the fractured surfaces to rebind after heating to 150 °C for 30 min.

  相似文献   


7.
Soluble poly[styrene‐co‐(acrylic acid)] (PSA) modified by magnesium compounds was used to support TiCl4. For ethylene polymerization, four catalysts were synthesized, namely PSA/TiCl4, PSA/MgCl2/TiCl4, PSA/(n‐Bu)MgCl/TiCl4, and PSA/(n‐Bu)2Mg/TiCl4. The catalysts were characterized by a set of complementary techniques including X‐ray photoelectron spectroscopy, Fourier‐transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, scanning electron microscopy, and element analysis. Synthesis mechanisms of polymer‐supported TiCl4 catalysts were proposed according to their chemical environments and physical structures. The binding energy of Ti 2p in PSA/TiCl4 was extremely low as TiCl4 attracted excessive electrons from ? COOH groups. Furthermore, the chain structure of PSA was destroyed because of intensive reactions taking place in PSA/TiCl4. With addition of (n‐Bu)MgCl or (n‐Bu)2Mg, ? COOH became ? COOMg‐ which then reacted with TiCl4 in synthesis of PSA/(n‐Bu)MgCl/TiCl4 and PSA/(n‐Bu)2Mg/TiCl4. Although MgCl2 coordinated with ? COOH first, TiCl4 would substitute MgCl2 to coordinate with ? COOH in PSA/MgCl2/TiCl4. Due to the different synthesis mechanisms, the four polymer‐supported catalysts correspondingly showed various particle morphologies. Furthermore, the polymer‐supported catalyst activity was enhanced by magnesium compounds in the following order: MgCl2 > (n‐Bu)MgCl > (n‐Bu)2Mg > no modifier. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
Two series of hydrogels of poly[(acrylic acid)‐co‐(itaconic acid)] have been prepared by copolymerization in solution using tetrafunctional N,N′‐methylenebisacrylamide (NMBA) as cross‐linker. The resulting polymer was swollen in water at 298 K to yield homogenous transparent hydrogels. These hydrogels were characterized in terms of swelling and compression‐strain measurements. The influence of the comonomer composition and concentration of cross‐linking agent on volumetric swelling and the mechanical properties of these hydrogels were investigated. Inefficient cross‐linking is indicated by the small values of νe relative to the theoretical cross‐linking densities.

Dependence of measured affective cross‐linking density (νe) on the theoretical cross‐linking density (νt) for acrylic acid/itaconic acid hydrogels prepared at a fixed composition of AA80/AI20 wt.‐%, but at different concentrations of NMBA.  相似文献   


9.
Polyacrylonitrile terpolymers of various compositions consisting of acrylonitrile (AN), itaconic acid (IA) and methyl acrylate (MA) were synthesized by solution polymerization in dimethylsulfoxide. Increase in concentration of either IA or MA retarded the overall polymerization rate and the polymer molecular weight. The system consisting of AN + MA and varying IA concentration was more prone to retardation in comparison with the system composed of AN + IA with variable MA concentration. The retardation factors were quantified. Minor quantities of MA boost the reactivity of IA in the terpolymer system. The terpolymer was richer in MA vis‐à‐vis the feed. The thermal characteristics of the terpolymer were examined as a function of its composition. In contrast to the copolymer of AN and IA requiring 1–1.5 mol% IA, the terpolymer required an IA content of approximately 2.5 mol% for optimum thermal stability. The polymer with 90 mol% AN, 2.5 mol% IA and 7.5 mol% MA exhibited reasonably good char‐forming characteristics and thermal stability. The overall crystallinity and crystallite size of the polymers were found to decrease on incorporation of the comonomers. The ‘aromatization index’ of the copolymer increased with the temperature of pyrolysis through re‐organization of the tetrahydropyridine ladder structure. Copyright © 2005 Society of Chemical Industry  相似文献   

10.
An ethylene/5,7‐dimethylocta‐1,6‐diene copolymer was sulfonated using two different approaches, solution and surface modification, varying parameters such as reaction time, temperature and concentration of the sulfonation reagent. Techniques such as attenuated total reflectance Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy and elemental analysis confirmed the successful sulfonation of the copolymer by both methods. Water uptake studies showed that the polarity of the initial copolymer was markedly changed upon functionalization and that the sulfonation by the in‐solution method produced more hydrophilic polymers compared to the surface procedure. Moreover, differential scanning calorimetry and thermogravimetric analysis pointed out additional changes to the thermal properties of the sulfonated polymers relative to the copolymer precursor. This study showed that the sulfonation process of the non‐polar ethylene–diene copolymer led to a new hydrophilic material with a potential wide range of applications. © 2017 Society of Chemical Industry  相似文献   

11.
Poly(ethylene‐co‐vinyl acetate) (EVA)/Calcium phosphate nanocomposites were prepared by melt mixing in a Brabender plasticoder. Nanoparticles of calcium phosphate were synthesized by the polymer‐mediated synthesis and characterized by X‐ray diffractometry and transmission electron microscopy. Mechanical properties such as tensile strength, tensile modulus, tear strength, etc., were measured with respect to the filler loading. Thermal stability of the composites under nitrogen atmosphere was also measured. The composites showed better thermal stability due to the nanoreinforcement. Oxygen gas permeability of the composites showed considerable decrease due to tortuous path created by the nanofillers. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

12.
Chemical modification of EVOH in the molten state at 185 °C by a grafting from process of poly(ε‐caprolactone) in batch was studied. 1H NMR was used to characterize the structure evolutions of PCL grafts. In addition to grafting reactions, dynamic covalent transesterification reactions between EVOH residual alcohols and the polyester grafts led to a redistribution of the PCL grafts length. up to 27 and SR up to 80% were obtained. Experiments made in a corotating mini twin‐screw extruder also confirmed these results. The effect of the alcohol to caprolactone ratio and catalyst concentration (SnOct2) on kinetic evolution showed that few minutes were necessary to complete the polymerization. A kinetic model was proposed and adequate conditions for the synthesis by reactive extrusion were defined.

  相似文献   


13.
The crosslinked resins poly(acrylic acid) (PAA) and poly[N‐3‐(dimethylamino)propyl acrylamide‐co‐acrylic acid] [P(NDAPA‐co‐AA)] are obtained by radical polymerization and characterized by FTIR spectroscopy. PAA at basic pH exists basically as an acrylate anion that may contain end carboxylate groups or form bridges acting as mono‐ or bidentate ligands. P(NDAPA‐co‐AA) presents three potential ligand groups in its structure: carboxylic acid, amide, and amine. The trace metal ion retention properties of these two resins is compared by using the batch equilibrium procedure. The metal ions are contained in saline aqueous solutions and are found in natural seawater. The retention of Cu(II), Pb(II), Cd(II), and Ni(II) metal ions is studied under competitive and noncompetitive conditions. The effects on the pH, contact time, amount of adsorbent, temperature, and salinity are investigated. The PAA resin presents a high affinity (>80%) for Cu(II) and Cd(II) ions. The P(NDAPA‐co‐AA) resin shows a high affinity for Pb(II) and Cd(II) ions. With 4M HNO3 it is possible to completely recover the PAA resin charged with Cu(II) ions and the P(NDAPA‐co‐AA) resin charged with Pb(II) ions. The two resins show a high affinity for Cd(II) ions from the seawater containing Cu(II) and Cd(II) ions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1385–1394, 2005  相似文献   

14.
Summary: Blends of poly(propylene) (PP) were prepared with poly[ethylene‐co‐(methyl acrylate)] (EMA) having 9.0 and 21.5% methyl acrylate comonomer. A similar series of blends were compatibilized by using maleic anhydride grafted PP. The morphology and mechanical properties of the blends were investigated using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) in tensile mode. The DMA method and conditions were optimized for polymer film specimens and are discussed in the experimental section. The DSC results showed separate melting that is indicative of phase‐separated blends, analogous to other PP‐polyethylene blends but with the added polarity of methyl acrylate pendant side groups that may be beneficial for chemical resistance. Heterogeneous nucleation of PP was decreased in the blends because of migration of nuclei into the more polar EMA phase. The crystallinity and peak‐melting temperature did not vary significantly, although the width of the melting endotherm increased in the blends indicating a change had occurred to the crystals. DMA analysis showed the crystal‐crystal slip transition and glass transition (Tg) for PP as well as a Tg of the EMA copolymer occurring chronologically toward lower temperatures. The storage modulus of PP and the blends was generally greater with annealing at 150 °C compared with isothermal crystallization at 130 °C. The storage modulus of the blends for isothermally crystallized PP increased with 5% EMA, then decreased for higher amounts of EMA. Annealing caused a decrease with increasing copolymer content. The extent of the trend was greater for the compatibilized blends. The Tg of the blends varied over a small range, although this change was less for the compatibilized blends.

Storage modulus for PP and EMA9.0 blends annealed at 150 °C.  相似文献   


15.
The very high dope viscosity of concentrated dope of poly[acrylonitrile‐co‐(methyl acrylate)‐co‐(itaconic acid)] (with M?v = 10.67 × 105g mol?1) in DMF could be diminished significantly by the addition of oxalic acid (OXA). The change in steady shear rheological behaviour caused by OXA has been analysed for the dope using a rheometer working in the viscosity mode. The temperature dependence of η0 conformed to the Arrhenius‐Frenkel‐Eyring equation. ΔGv decreased marginally with OXA concentration, and the least value was observed at an OXA concentration of 0.63 % by weight. Shear thinning behaviour was observed under higher shear rates for the terpolymer solutions in the presence and absence of OXA. The pseudoplasticity index (n) showed an abrupt initial increase on addition of OXA. The OXA concentration of 0.63 % by weight was advantageous for decreasing the viscosity of the polymer dope. The reduction in viscosity is attributed to the disturbed polymer‐polymer interactions by way of H‐bonding of OXA with the polymer. OXA‐containing dope at higher shear rate could achieve very low viscosities. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
BACKGROUND: The thermomechanical performance of poly[(3‐hydroxybutyrate)‐co‐(3‐hydroxyvalerate)] (PHBV) is associated with its crystallization. Enhanced nucleation using a stearate‐functionalized synthetic layered double hydroxide (LDH) presents a potential solution. RESULTS: PHBV crystallization varied with concentration of LDH. At lower LDH concentration, thermal history‐induced cold crystallization was present. The extent of this order–disorder transition decreased with increasing LDH concentration and was completely eliminated at 7 wt% LDH. PHBV did not have a melt recrystallization peak but the introduction of LDH resulted in an increasingly pronounced melt recrystallization with increasing LDH concentration. Polarized optical microscopy coupled with differential scanning calorimetry and wide angle X‐ray diffraction (WAXD) analysis indicated increased lamella thickness in the nanocomposites compared to pure PHBV. WAXD and transmission electron microscopy showed that the nanocomposites had an intercalated but aggregated dispersion. CONCLUSION: The concentration of nanofiller provides unique effects in PHBV. Mechanical performance was found to scale with composition as determined using dynamic mechanical analysis and tensile testing. Copyright © 2008 Society of Chemical Industry  相似文献   

17.
The preparation of high‐dielectric poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) (SEBS) composites containing functionalized single‐walled carbon nanotubes (f‐SWCNTs) noncovalently appended with dibutyltindilaurate are reported herein. Transmission electron microscopy and X‐ray photoelectron and Raman spectroscopy confirmed the noncovalent functionalization of the SWCNTs. The SEBS‐f‐SWCNT composites exhibited enhanced mechanical properties as well as a stable and high dielectric constant of approximately 1000 at 1 Hz with rather low dielectric loss at 2 wt% filler content. The significantly enhanced dielectric property originates from the noncovalent functionalization of the SWCNTs that ensures good dispersion of the f‐SWCNTs in the polymer matrix. The f‐SWCNTs also acted as a reinforcing filler, thereby enhancing the mechanical properties of the composites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
The novel nanosuperabsorbent copolymer (NSAP) was synthesized by grafting copolymerization of acrylamide (AM) and acrylic acid (AA) onto starch with montmorillonite (MMT) initiated using 60Co γ‐ray irradiation. NSAP was characterized by IR spectroscopy and X‐ray diffraction (XRD). Different synthesis parameters were studied, such as AM‐to‐AA ratio, radiation total dose, radiation dose rate, crosslinker content, and clay content. NSAP can effectively improve the water retention capacity of soil. The effects of NSAP on crops were also studied, showing that NSAP has an encouraging potential for agricultural application. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1341–1346, 2005  相似文献   

19.
Thermoplastic elastomer (TPE)–clay nanocomposites based on poly[styrene–(ethylene‐co‐butylene)–styrene] triblock copolymer (SEBS) were prepared. Natural sodium montmorillonite (MMT) clay was organically modified by octadecyl amine to produce an amine‐modified hydrophobic nanoclay (OC). Commercially available Cloisite 20A (CL20) and Cloisite 10A, tallow ammine modified nanoclays, were also used. The intergallery spacing of MMT increased on amine modification as suggested by the shifting of the X‐ray diffraction (XRD) peak from 7.6 to 4.5 and 3.8° in the cases of OC and CL20, respectively. The latter demonstrated no XRD peak when it was used at 2 and 4 parts phr in the SEBS system. Transmission electron microscopy studies showed the intercalation–exfoliation morphology in SEBS containing 4 parts of CL204–SEBS, agglomeration in SEBS having 4 parts of MMT, and mixed morphology in SEBS with 4 parts of OC systems. Locations of the clay particles were indicated by the atomic force micrographs. Mechanical and dynamic mechanical thermal analysis studies confirmed the best properties with the CL204–SEBS nanocomposites. Significant improvements in mechanical properties such as tensile strength, modulus, work to break, and elongation at break were achieved with the CL204–SEBS in polymer‐layered silicate nanocomposites. Dynamic mechanical studies further showed the affinity of the organoclays toward both segments of the TPE and a compatibilization effect with CL20 at a 4‐phr loading. Atomic force microscopy showed distinctly different morphologies in nanocomposites prepared through solution and melt processing. Comparisons of the mechanical, dynamic mechanical, and morphological properties of the nanocomposites prepared by melt and solution intercalation processes were done. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2040–2052, 2006  相似文献   

20.
Polymer‐coated SiO2 particles are prepared by precipitation of poly[styrene‐co‐(acrylic acid)] on SiO2 microspheres through an improved phase inversion method. The diffusion resistance of the polymer membrane was considered to be the critical reason for producing tailor‐made polyethylene by catalysts supported on these polymer‐coated particles. This paper employs pulsed field gradient NMR (PFG‐NMR) to distinguish diffusion of n‐hexane in different regimes, i.e., in the space between each particle, the pores in SiO2 and the polymer shell, by their respective diffusion coefficients. By varying the observation time, the time scale of the molecular exchange is discussed. A three‐region ansatz was used to interpret the exchange and diffusion in polymer‐coated SiO2 system, and was compared with results acquired with noncoated particles. At long diffusion times, the mean‐squared displacement, and thus the averaged self‐diffusion coefficient, of hexane in the system of polymer‐coated SiO2 particles is significantly reduced. The PSA membrane is identified as an efficient barrier against molecular exchange between the pores in SiO2 and the intraparticle space. Consistently, the relaxation measurements indicated that the mobility of n‐hexane molecules, especially the rotation of n‐hexane, was limited by the PSA membrane. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40160.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号