首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alumina (Al2O3) fiber/high density polyethylene (HDPE) composites were prepared by molding injection with or without compatibilizer, in which, maleic anhydride‐grafted polyethylene (PE‐g‐MA) and acrylic acid‐grafted polyethylene (PE‐g‐AA) were used as the compatibilizers. The thermal conductivities of the composites were anisotropic and the conductivities in the injection direction of the samples were higher than those in perpendicular direction of the injection. The anisotropic thermal conductivity for Al2O3/PE‐g‐AA/HDPE was the most obvious and this composite also gave the best mechanical performance. The SEM and DMA test revealed that PE‐g‐AA was more effective than PE‐g‐MA in improving the matrix–filler interaction. The high interfacial interaction was more favorable for the viscous flow‐induced fiber orientation, which resulted in the largest anisotropic degree of thermal conductivity of the Al2O3/PE‐g‐AA/HDPE among the studied composite. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
In this study, rice‐straw (RS) filled high density polyethylene (HDPE) composites were manufactured by extrusion and injection molding. Three compatibilizers, which are unfunctionalized ethylene/propylene copolymer (uEPR), maleic anhydride grafted EPR (EPR‐g‐MA) and PE‐g‐MA, and their combinations were introduced to strengthen fiber‐matrix interphase. The mechanical and morphological properties of composites were investigated. For single‐compatibilizer system, PE‐g‐MA or EPR‐g‐MA alone enhanced tensile, flexural, and impact strengths of resultant composites compared with HDPE/RS system without compatibilizers. Different toughening origins of individual compatibilizer were discussed based on composites' interphase morphologies and mechanical properties. For combined‐compatibilizers system, the PE‐g‐MA/EPR weight ratio is important for several properties of composites. The optimum ratio was considered as 2 : 1 and 1 : 1 for PE‐g‐MA/uEPR and PE‐g‐MA/EPR‐g‐MA modified composites, respectively. Also, composites modified by combined PE‐g‐MA/EPR‐g‐MA showed better impact strength than that modified by PE‐g‐MA alone. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
With the increasing ratio of waste tire powder (WTP) to low‐density polyethylene (LDPE), the hardness and tensile strength of the WTP/LDPE blends decreased while the elongation at break increased. Five kinds of compatibilizers, such as maleic anhydride‐grafted polyethylene (PE‐g‐MA), maleic anhydride‐grafted ethylene‐octene copolymer (POE‐g‐MA), maleic anhydride‐grafted linear LDPE, maleic anhydride‐grafted ethylene vinyl‐acetate copolymer, and maleic anhydride‐grafted styrene‐ethylene‐butylene‐styrene, were incorporated to prepare WTP/LDPE blends, respectively. PE‐g‐MA and POE‐g‐MA reinforced the tensile stress and toughness of the blends. The toughness value of POE‐g‐MA incorporating blends was the highest, reached to 2032.3 MJ/m3, while that of the control was only 1402.9 MJ/m3. Therefore, POE‐g‐MA was selected as asphalt modifier. The toughness value reached to the highest level when the content of POE‐g‐MA was about 8%. Besides that the softening point of the modified asphalt would be higher than 60°C, whereas the content of WTP/LDPE blend was more than 5%, and the blends were mixed by stirring under the shearing speed of 3000 rpm for 20 min. Especially, when the blend content was 8.5%, the softening point arrived at 82°C, contributing to asphalt strength and elastic properties in a wide range of temperature. In addition, the swelling property of POE‐g‐MA/WTP/LDPE blend was better than that of the other compalibitizers, which indicated that POE‐g‐MA /WTP/LDPE blend was much compatible with asphalt. Also, the excellent compatibility would result in the good mechanical and processing properties of the modified asphalt. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Nanoclay (NC) reinforced high‐density polyethylene (HDPE) composites were prepared by different melt compounding methods using (1) a single screw extruder (SSE), (2) twin screw extruder (TSE), (3) a combination of SSE and extensional flow mixer (EFM), and (4) a bowl mixer masterbatch method (MB). PE‐grafted maleic anhydride (PE‐g‐MA) was used as a compatibilizer. EFM increased complex melt viscosity (η*) of the HDPE/NC composites as compared to the neat HDPE and also provided a better interaction between HDPE and NC to create slightly lower melt η* as compared to MB and PE‐g‐MA composites. The low viscosity melt behavior of the pure HDPE changes to more solid like melt behavior in the PE‐g‐MA HDPE/NC composites in the low frequency (ω) region. PE‐g‐MA + EFM method exhibited better impact strength compared to the other HDPE/NC composites. Using the PE‐g‐MA and masterbatch compounding methods had a beneficial role in improving mechanical properties. POLYM. ENG. SCI., 57:324–334, 2017. © 2016 Society of Plastics Engineers  相似文献   

5.
Thermoplastic natural rubber (TPNR) composites of natural rubber and high‐density polyethylene at a ratio of 70/30 were prepared by melt blending with aramid fibers using an internal mixer. The fiber loadings were varied from 0 to 30% for systems with and without graft‐copoly(ethylene/maleic anhydride) (PE‐g‐MA) as a compatibilizer to study the variation of mechanical and dynamic mechanical properties. The tensile strength, modulus, hardness, and storage modulus improved with fiber loadings for both systems. The interaction between the matrix and fiber had also improved with the addition of PE‐g‐MA. Nevertheless, different behavior was observed in tan δ peak. The tan δ peak decreased with the increment of Twaron composition in the system with PE‐g‐MA and increased in the system without PE‐g‐MA. The results showed the importance of PE‐g‐MA in the system in improving the mechanical properties of Twaron–TPNR composite. POLYM. COMPOS., 27:395–401, 2006. © 2006 Society of Plastics Engineers  相似文献   

6.
The main objective of this research was to synthesize a new compatibilisant agent (PVC‐g‐MA), which was grafted from the maleic anhydride on the PVC chains. The presence of maleic anhydride grafting on PVC was made evident by infrared analysis. PVC‐g‐MA was used like compatibilisant to solve the problem of the incompatibility between the hydrophobic polymeric matrix (PVC) and hydrophilic fiber (alfa). Composites samples were prepared with different alfa fiber loading (10, 20, and 30 wt %) and incorporating PVC‐g‐MA (1, 3, and 5 wt %) or PP‐g‐MA (3 wt %). The tensile properties, the thermal stability and the morphology of the composites were investigated. The result indicated that the PVC‐g‐MA increased the interfacial adhesion between the fibers and the polymer matrix and this effect was better than that obtained for the maleated‐polypropylene‐coupled composites. Microstructure analysis of the fractured surfaces of MAPP modified composites confirmed improved interfacial bonding. The addition of alfa and PVC‐g‐MA increased the thermal stability of the composites. The temperature of degradation of the polymer matrix increased about 16°C in comparison to the noncoupled composite, indicating that PVC‐g‐MA improved the thermal stability of the polymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
In this study, we report the synergistic effect of nanoclay and maleic anhydride grafted polyethylene (PE‐g‐MA) on the morphology and properties of (80/20 w/w) nylon 6/high density polyethylene (HDPE) blend. Polymer blend nanocomposites containing nanoclay with and without compatibilizer (PE‐g‐MA) were prepared by melt mixing, and their morphologies and structures were examined with scanning electron microscopy (SEM) and wide angle X‐ray diffractometer (WAXD) study. The size of phase‐separated domains decreased considerably with increasing content of nanoclay and PE‐g‐MA. WAXD study and transmission electron microscopy (TEM) revealed the presence of exfoliated clay platelets in nylon 6 matrix, as well as, at the interface of the (80/20 w/w) nylon 6/HDPE blend–clay nanocomposites. Addition of PE‐g‐MA in the blend–clay nanocomposites enhanced the exfoliation of clays in nylon 6 matrix and especially at the interface. Thus, exfoliated clay platelets in nylon 6 matrix effectively restricted the coalescence of dispersed HDPE domains while PE‐g‐MA improved the adhesion between the phases at the interface. The use of compatibilizer and nanoclay in polymer blends may lead to a high performance material which combines the advantages of compatibilized polymer blends and the merits of polymer nanocomposites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
This article deals with the feasibility of using recycled corrugated paper board (rPF) as the reinforcing material for recycled plastics. The composites of recycled polypropylene (rPP) and rPF were prepared by extrusion compounding and injection molding, and the rPP/rPF composites compatibilized by maleic anhydride grafted PP (PP‐g‐MA), maleic anhydride grafted ethylene‐1‐octene copolymer (POE‐g‐MA), and maleic anhydride grafted styrene‐ethylene‐butylene‐styrene copolymer (SEBS‐g‐MA) were also prepared. The crystallization and melting behavior, mechanical properties, thermal stability, and morphology of these composites were studied. The results indicated that rPF promoted the crystallization, enhanced the strength and toughness of rPP/rPF composites to some extent while decreased thermal stability at the same time. PP‐g‐MA and POE‐g‐MA improved the dispersion and interface adhesion of rPF, and further upgraded the mechanical properties and vicat softening temperatures. Among these compatibilizers, PP‐g‐MA was most favorable to the strength improvement while POE‐g‐MA was most favorable to the toughness improvement. As for SEBS‐g‐MA, it had no obvious modification effect. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
This report deals with the development of unmodified and modified halloysite nanotube (HNT) based cyclic olefin copolymer (COC) composites. Maleic anhydride grafted polyethylene (MA‐g‐PE) has been used as a compatibilizer. Exfoliation of organically modified HNTs (mHNTs) and dispersion of it in polymer matrix was observed by X‐ray diffraction, transmission electron microscopy, and field emission scanning electron microscopy analysis, respectively. Augmented dynamic mechanical and thermal properties of the composites were provided by incorporating mHNTs into the pure matrix. In this work, we have proposed that the modification of HNTs enhanced the dispersion and strong interfacial interaction which led to better performance of the composites where MA‐g‐PE acts as a bridging tool between polar clays and nonpolar COC. POLYM. COMPOS., 36:955–960, 2015. © 2014 Society of Plastics Engineers  相似文献   

10.
Many authors have reported on the property enhancements possible by compounding high density polyethylene (HDPE) with fillers to produce composites. It is accepted that polyethylene combined with materials such as nanoclay or wood flour will not yield favorable properties unless a compatibilizing material is used to form a link. In this work, compatibilized HDPE was produced by grafting maleic anhydride (MA) to its backbone in a twin screw extruder using a peroxide initiated reactive process. Fourier transform infrared spectroscopy (FTIR) was used to examine the effects of varying peroxide and MA levels on the grafting percentage and it was found that a high percentage could be achieved. The gel content of each HDPE‐g‐MA batch was determined and twin bore rheometry analysis was carried out to examine the effects of crosslinking and MA grafting on the melt viscosity. These HDPE‐g‐MA compatibilizers were subsequently compounded with nanoclay and wood flour to produce composites. The composite materials were tested using a three point bending apparatus to determine the flexural modulus and strength and were shown to have favorable mechanical properties when compared with composites containing no compatibilizer. X‐ray diffraction (XRD) was used to examine the effects of grafted MA content on the intercalation and exfoliation levels of nanoclay composites. The results from XRD scans showed that increased intercalation in polymer nanoclay composites was achieved by increasing the grafted MA content. This was confirmed using a scanning electron microscope, where images produced showed increased levels of dispersion and reductions in nanoclay agglomerates. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
BACKGROUND: Conventional rubber‐like toughening modifiers are soft and amorphous, and when used to toughen polyamide 11 (PA11) they commonly induce a decrease in the tensile strength and modulus. In this study, crystallizable polyethylene (PE) derivatives, i.e. linear low‐density polyethylene (LLDPE) and maleic anhydride‐grafted polyethylene (PE‐g‐MA), were adopted to toughen PA11. RESULTS: Compared to pure PA11, a highest improvement by a factor of eight in the impact toughness was achieved; also, the tensile strength and modulus could be maintained at a relatively high level. PE‐g‐MA acted as a compatibilizer for PA11 and LLDPE, bringing strong interfacial adherence, and especially a domain‐in‐domain morphology observed in PA11/PE‐g‐MA/LLDPE (70/10/20 by weight) blends. The observation that PA11 was toughened by the crystallizable PE derivatives is discussed in depth, based on the combined effect of surface crystallization of LLDPE on pre‐formed PA11 crystallites and interfacial compatiblization between PA11 and PE‐g‐MA. CONCLUSION: The crystallizable PE derivatives LLDPE and PE‐g‐MA were shown to be effective toughening modifiers for the proportions PA11/PE‐g‐MA/LLDPE 70/10/20 (by weight), which is considered to be an optimum composition: special domain‐in‐domain morphology was observed indicating a good dispersion of PE in the PA11 matrix and strong interfacial adherence between PE phase and PA11 phase. The reason why strength and modulus were maintained at a high level in the as‐prepared blends was attributed to the existence of rigid crystalline domains in PE. Copyright © 2009 Society of Chemical Industry  相似文献   

12.
This work studied the poly(vinyl chloride) (PVC) chemically modified with maleic anhydride (MA) through reactions in solution, using benzoyl peroxide as an initiator. Quantities of the grafted MA were determined by the titration of carboxylic acid groups derived from the anhydride functions. Estimation of the grafted MA level was also performed by using IR absorbance ratio. Increases in reaction time led to higher levels of grafted MA. The effects of three different PVCs grafted with maleic anhydride (PVC‐g‐MAs) types on the morphological, mechanical, and thermal properties of PVC/alfa (fiber) composites were examined. The interfacial properties between fiber and PVC were improved after the addition of PVC‐g‐MA, as was evident from SEM morphology study. Enhancements of the mechanical properties and thermal stability of the PVC‐g‐MA‐treated composites were strongly dependent on the amount of MA grafts. J. VINYL ADDIT. TECHNOL., 19:225–232, 2013. © 2013 Society of Plastics Engineers  相似文献   

13.
The effects of glycerol and polyethylene‐grafted maleic anhydride (PE‐g‐MA) on the morphology, thermal properties, and tensile properties of low‐density polyethylene (LDPE) and rice starch blends were studied by scanning electron microscopy (SEM), differential scanning calorimetry, and the Instron Universal Testing Machine, respectively. Blends of LDPE/rice starch, LDPE/rice starch/glycerol, and LDPE/rice starch/glycerol/PE‐g‐MA with different starch contents were prepared by using a laboratory scale twin‐screw extruder. The distribution of rice starch in LDPE matrix became homogenous after the addition of glycerol. The interfacial adhesion between rice starch and LDPE was improved by the addition of PE‐g‐MA as demonstrated by SEM. The crystallization temperatures of LDPE/rice starch/glycerol blends and LDPE/rice starch/glycerol/PE‐g‐MA blends were similar to that of pure LDPE but higher than that of LDPE/rice starch blends. Both the tensile strength and the elongation at break followed the order of rice starch/LDPE/glycerol/PE‐g‐MA blends > rice starch/LDPE/glycerol > LDPE/rice starch blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 344–350, 2004  相似文献   

14.
Dynamically vulcanized thermoplastic elastomers nanocomposites (TPV nanocomposites) based on linear low density polyethylene (LLDPE)/reclaimed rubber/organoclay were prepared via one‐step melt blending process. Maleic anhydride grafted polyethylene (PE‐g‐MA) was used as a compatibilizing agent. The effects of reclaimed rubber content (10, 30, and 50 wt %), nanoclay content (3, 5, and 7 wt %), and PE‐g‐MA on the microstructure, thermal behavior, mechanical properties, and rheological behavior of the nanocomposites were studied. The TPV nanocomposites were characterized by X‐ray diffraction, transmission electron microscopy, scanning electron microscopy (SEM), differential scanning calorimeter, mechanical properties, and rheometry in small amplitude oscillatory shear. SEM photomicrographs of the etched samples showed that the elastomer particles were dispersed homogeneously throughout the polyethylene matrix and the size of rubber particles was reduced with introduction of the organoclay particles and compatibilizer. The effects of different nanoclay contents, different rubber contents, and compatibilizer on mechanical properties were investigated. Increasing the amount of nanoclay content and adding the compatibilizer result in an improvement of the tensile modulus of the TPV nanocomposite samples. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
In the present study, high density polyethylene (HDPE)‐based composites containing different amounts of fumed silica (FS) were prepared by melt compounding in a corotating twin screw extruder. Polyethylene‐g‐maleic anhydride copolymer (PE‐g‐MA) containing 1 wt% maleic anhydride was used for interface modification between filler and polymer. The interaction between the surface hydroxyl groups of fumed silica nanoparticles with maleic anhydride groups of PE‐g‐MA led to a finer dispersion of the filler in the HDPE matrix. The terminal complex viscosity and terminal storage modulus were highest at 1 wt% filler loading due to widely spread network formation by FS nanoparticles. This filler network plausibly got disturbed at higher filler content and/or interface modification which was reflected in their stress relaxation behavior also. The dynamic rheological behavior of the composites was explained in terms of morphological observations. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

16.
In this article, polyamide 6 (PA6)/clay nanocomposites, PA6/polyethylene grafted maleic anhydride (PE‐g‐MA) blends, and PA6/PE‐g‐MA/clay nanocomposites were prepared and their gasoline permeation behavior and some mechanical properties were investigated. In PA6/clay nanocomposites, cloisite 30B was used as nanoparticles, with weight percentages of 1, 3, and 5. The blends of PA6/PE‐g‐MA were prepared with PE‐g‐MA weight percents of 10, 20, and 30. All samples were prepared via melt mixing technique using a twin screw extruder. The results showed that the lowest gasoline permeation occurred when using 3 wt % of nanoclay in PA6/clay nanocomposites, and 10 wt % of PE‐g‐MA in PA6/PE‐g‐MA blends. Therefore, a sample of PA6/PE‐g‐MA/clay nanocomposite containing 3 wt % of nanoclay and 10 wt % of PE‐g‐MA was prepared and its gasoline permeation behavior was investigated. The results showed that the permeation amount of PA6/PE‐g‐MA/nanoclay was 0.41 g m?2 day?1, while this value was 0.46 g m?2 day?1 for both of PA6/3wt % clay nanocomposite and PA6/10 wt % PE‐g‐MA blend. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40150.  相似文献   

17.
Short bamboo fiber reinforced polypropylene composites were prepared by incorporation of various loadings of chemically modified bamboo fibers. Maleic anhydride grafted polypropylene (MA‐g‐PP) was used as compatibilizer to improve fiber–matrix adhesion. The effects of bamboo fiber loading and modification of the resin on the physical, mechanical, thermal, and morphological properties of the bamboo reinforced modified PP composites were studied. Scanning electron microscopy studies of the composites were carried out on the interface and fractured surfaces. Thermogravimetric analysis and IR spectroscopy were also carried out. At 50% volume fraction of the extracted bamboo fiber in the composites, considerable increase in mechanical properties like impact, flexural, tensile, and thermal behavior like heat deflection temperature were observed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
In this study, the effect of oil fly ash (OFA), a by‐product of oil fuel power plants, on the rheological and morphological behavior of low‐density polyethylene (LDPE) is investigated. As received and acid‐functionalized OFA (COOH‐OFA) are used to examine the effect of surface modification of OFA on polymer–filler composites. LDPE/OFA composites were prepared by melt mixing with filler loading in the range 1–10 wt %. The results are compared with pure LDPE. The effect of polyethylene‐grafted‐maleic anhydride (PE‐g‐MA) as a compatibilizer was also studied. Both viscous and elastic properties of composites increased with OFA loading especially at low frequency. The surface modification of OFA has influenced the properties of OFA. As‐received OFA showed some agglomeration at high loading that resulted in two‐phase system as described by scanning electron microscopy (SEM) and Cole–Cole plot. Field emission‐SEM (FE‐SEM) images showed improvement in the dispersion of COOH‐LDPE/OFA composites. In addition, the surface modification reduced the size of agglomeration. In general, the COOH modification of OFA improved both the dispersion and rheological properties of OFA. With chemical modification, the concentration of the filler can be increased to 10% without compromising the properties of the composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

19.
The effectiveness as impact modifier of two in situ maleated metallocene copolymers, a metallocene polyethylene, (mPE1) and a metallocene ethylene‐propylene (mEPDM) and three commercial maleated copolymers (mPE2‐g‐MA, EPDM‐g‐MA, and mEPR‐g‐MA) were studied in binary and ternary blends carried out in an intermeshing corotating twin‐screw extruder with polyamide‐6 (PA) as matrix (80 wt %). Also, the effects of the grafting degree, viscosity ratio, and crystallinity of the dispersed phases on the morphological and mechanical properties of the blends were investigated. A significant improvement of the compatibility of these grafted copolymers with PA6 was shown by FTIR spectroscopy, capillary rheometry, and scanning electron microscopy (SEM) in all reactive blends. The tensile strength values of the mEPR‐g‐MA/PA2 binary blend showed the highest strain hardening. The results obtained in this work indicated that the effectiveness of the grafted copolymers as impact modifier depends on the morphology of the blends and a combination of tensile properties of the blend components such as Young's modulus, Poisson ratio, and break stress. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
The structural, mechanical, biocompatibility, and biodegradability properties of composite materials formed of poly(butylene succinate) (PBS) and natural fiber (chestnut shell fiber; CSF) were evaluated. Maleic anhydride‐grafted poly(butylene succinate) (PBS‐g‐MA) and treated (crosslinked) CSF (TCSF) were used to improve the mechanical properties of PBS/CSF composites. The results show that PBS‐g‐MA/TCSF composites have superior mechanical properties compared with both pure PBS and PBS/CSF composites, which is attributed to better compatibility between the polymer and TCSF. Normal human foreskin fibroblasts (FBs) were seeded onto these two series of composites to characterize the biocompatibility. FB proliferation, collagen production, and cytotoxicity assays on the PBS/CSF series of composites exhibited superior results compared with those on the PBS‐g‐MA/TCSF composites. PBS‐g‐MA/TCSF was found to be more water resistant than PBS/CSF, and the weight loss of both the composites buried in soil compost indicated that both were biodegradable, especially at high levels of CSF substitution. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40730.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号