首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knee osteoarthritis (KOA) represents a clinical challenge due to poor potential for spontaneous healing of cartilage lesions. Several treatment options are available for KOA, including oral nonsteroidal anti-inflammatory drugs, physical therapy, braces, activity modification, and finally operative treatment. Intra-articular (IA) injections are usually used when the non-operative treatment is not effective, and when the surgery is not yet indicated. More and more studies suggesting that IA injections are as or even more efficient and safe than NSAIDs. Recently, research to improve intra-articular homeostasis has focused on biologic adjuncts, such as platelet-rich plasma (PRP). The catabolic and inflammatory intra-articular processes that exists in knee osteoarthritis (KOA) may be influenced by the administration of PRP and its derivatives. PRP can induce a regenerative response and lead to the improvement of metabolic functions of damaged structures. However, the positive effect on chondrogenesis and proliferation of mesenchymal stem cells (MSC) is still highly controversial. Recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, significant progress has been made in understanding the mechanism of PRP action. In this review, we will discuss mechanisms related to inflammation and chondrogenesis in cartilage repair and regenerative processes after PRP administration in in vitro and animal studies. Furthermore, we review clinical trials of PRP efficiency in changing the OA biomarkers in knee joint.  相似文献   

2.
3.
4.
In adult healthy cartilage, chondrocytes are in a quiescent phase characterized by a fine balance between anabolic and catabolic activities. In ageing, degenerative joint diseases and traumatic injuries of cartilage, a loss of homeostatic conditions and an up-regulation of catabolic pathways occur. Since cartilage differentiation and maintenance of homeostasis are finely tuned by a complex network of signaling molecules and biophysical factors, shedding light on these mechanisms appears to be extremely relevant for both the identification of pathogenic key factors, as specific therapeutic targets, and the development of biological approaches for cartilage regeneration. This review will focus on the main signaling pathways that can activate cellular and molecular processes, regulating the functional behavior of cartilage in both physiological and pathological conditions. These networks may be relevant in the crosstalk among joint compartments and increased knowledge in this field may lead to the development of more effective strategies for inducing cartilage repair.  相似文献   

5.
Background: Status epilepticus (SE) is a neurological disorder characterized by a prolonged epileptic activity followed by subsequent epileptogenic processes. The aim of the present study was to evaluate the early effects of topiramate (TPM) and lacosamide (LCM) treatment on oxidative stress and inflammatory damage in a model of pilocarpine-induced SE. Methods: Male Wistar rats were randomly divided into six groups and the two antiepileptic drugs (AEDs), TPM (40 and 80 mg/kg, i.p.) and LCM (10 and 30 mg/kg, i.p.), were injected three times repeatedly after pilocarpine administration. Rats were sacrificed 24 h post-SE and several parameters of oxidative stress and inflammatory response have been explored in the hippocampus. Results: The two drugs TPM and LCM, in both doses used, succeeded in attenuating the number of motor seizures compared to the SE-veh group 30 min after administration. Pilocarpine-induced SE decreased the superoxide dismutase (SOD) activity and reduced glutathione (GSH) levels while increasing the catalase (CAT) activity, malondialdehyde (MDA), and IL-1β levels compared to the control group. Groups with SE did not affect the TNF-α levels. The treatment with a higher dose of 30 mg/kg LCM restored to control level the SOD activity in the SE group. The two AEDs, in both doses applied, also normalized the CAT activity and MDA levels to control values. In conclusion, we suggest that the antioxidant effect of TPM and LCM might contribute to their anticonvulsant effect against pilocarpine-induced SE, whereas their weak anti-inflammatory effect in the hippocampus is a consequence of reduced SE severity.  相似文献   

6.
All nervous system pathologies (e.g., neurodegenerative/demyelinating diseases and brain tumours) develop neuroinflammation, a beneficial process during pathological events, aimed at removing damaged cells, toxic agents, and/or pathogens. Unfortunately, excessive inflammation frequently occurs during nervous system disorders, becoming a detrimental event capable of enhancing neurons and myelinating glial cell impairment, rather than improving their survival and activity. Consequently, targeting the neuroinflammation could be relevant for reducing brain injury and rescuing neuronal and glial cell functions. Several studies have highlighted the role of acetylcholine and its receptors in the regulation of central and peripheral inflammation. In particular, α7 nicotinic receptor has been described as one of the main regulators of the “brain cholinergic anti-inflammatory pathway”. Its expression in astrocytes and microglial cells and the ability to modulate anti-inflammatory cytokines make this receptor a new interesting therapeutic target for neuroinflammation regulation. In this review, we summarize the distribution and physiological functions of the α7 nicotinic receptor in glial cells (astrocytes and microglia) and its role in the modulation of neuroinflammation. Moreover, we explore how its altered expression and function contribute to the development of different neurological pathologies and exacerbate neuroinflammatory processes.  相似文献   

7.
Chronic low-grade inflammation plays a central role in the pathogenesis of osteoarthritis (OA), and several pro- and anti-inflammatory cytokines have been implicated to mediate and regulate this process. Out of these cytokines, particularly IFNγ, IL-1β, IL-4 and IL-17 are associated with different phenotypes of T helper (TH) cells and macrophages, both examples of cells known for great phenotypic and functional heterogeneity. Chondrocytes also display various phenotypic changes during the course of arthritis. We set out to study the hypothesis of whether chondrocytes might adopt polarized phenotypes analogous to TH cells and macrophages. We studied the effects of IFNγ, IL-1β, IL-4 and IL-17 on gene expression in OA chondrocytes with RNA-Seq. Chondrocytes were harvested from the cartilage of OA patients undergoing knee replacement surgery and then cultured with or without the cytokines for 24 h. Total RNA was isolated and sequenced, and GO (Gene Ontology) functional analysis was performed. We also separately investigated genes linked to OA in recent genome wide expression analysis (GWEA) studies. The expression of more than 2800 genes was significantly altered in chondrocytes treated with IL-1β [in the C(IL-1β) phenotype] with a fold change (FC) > 2.5 in either direction. These included a large number of genes associated with inflammation, cartilage degradation and attenuation of metabolic signaling. The profile of genes differentially affected by IFNγ (the C(IFNγ) phenotype) was relatively distinct from that of the C(IL-1β) phenotype and included several genes associated with antigen processing and presentation. The IL-17-induced C(IL-17) phenotype was characterized by the induction of a more limited set of proinflammatory factors compared to C(IL-1β) cells. The C(IL-4) phenotype induced by IL-4 displayed a differential expression of a rather small set of genes compared with control, primarily those associated with TGFβ signaling and the regulation of inflammation. In conclusion, our results show that OA chondrocytes can adopt diverse phenotypes partly analogously to TH cells and macrophages. This phenotypic plasticity may play a role in the pathogenesis of arthritis and open new therapeutic avenues for the development of disease-modifying treatments for (osteo)arthritis.  相似文献   

8.
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic systemic inflammation causing progressive joint damage that can lead to lifelong disability. The pathogenesis of RA involves a complex network of various cytokines and cells that trigger synovial cell proliferation and cause damage to both cartilage and bone. Involvement of the cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 is central to the pathogenesis of RA, but recent research has revealed that other cytokines such as IL-7, IL-17, IL-21, IL-23, granulocyte macrophage colony-stimulating factor (GM-CSF), IL-1β, IL-18, IL-33, and IL-2 also play a role. Clarification of RA pathology has led to the development of therapeutic agents such as biological disease-modifying anti-rheumatic drugs (DMARDs) and Janus kinase (JAK) inhibitors, and further details of the immunological background to RA are emerging. This review covers existing knowledge regarding the roles of cytokines, related immune cells and the immune system in RA, manipulation of which may offer the potential for even safer and more effective treatments in the future.  相似文献   

9.
Nutritional fatty acids are known to have an impact on membrane lipid composition of body cells, including cells of the immune system, thus providing a link between dietary fatty acid uptake, inflammation and immunity. In this study we reveal the significance of macrophage membrane lipid composition on gene expression and cytokine synthesis thereby highlighting signal transduction processes, macrophage activation as well as macrophage defense mechanisms. Using RAW264.7 macrophages as a model system, we identified polyunsaturated fatty acids (PUFA) of both the n-3 and the n-6 family to down-regulate the synthesis of: (i) the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α; (ii) the co-stimulatory molecule CD86; as well as (iii) the antimicrobial polypeptide lysozyme. The action of the fatty acids partially depended on the activation status of the macrophages. It is particularly important to note that the anti-inflammatory action of the PUFA could also be seen in case of infection of RAW264.7 with viable microorganisms of the genera R. equi and P. aeruginosa. In summary, our data provide strong evidence that PUFA from both the n-3 and the n-6 family down-regulate inflammation processes in context of chronic infections caused by persistent pathogens.  相似文献   

10.
11.
Interferon (IFN) signaling resulting from external or internal inflammatory processes initiates the rapid release of cytokines and chemokines to target viral or bacterial invasion, as well as cancer and other diseases. Prolonged exposure to IFNs, or the overexpression of other cytokines, leads to immune exhaustion, enhancing inflammation and leading to the persistence of infection and promotion of disease. Hence, to control and stabilize an excessive immune response, approaches for the management of inflammation are required. The potential use of peptides as anti-inflammatory agents has been previously demonstrated. Our team discovered, and previously published, a 9-amino-acid cyclic peptide named ALOS4 which exhibits anti-cancer properties in vivo and in vitro. We suggested that the anti-cancer effect of ALOS4 arises from interaction with the immune system, possibly through the modulation of inflammatory processes. Here, we show that treatment with ALOS4 decreases basal cytokine levels in mice with chronic inflammation and prolongs the lifespan of mice with acute systemic inflammation induced by irradiation. We also show that pretreatment with ALOS4 reduces the expression of IFN alpha, IFN lambda, and selected interferon-response genes triggered by polyinosinic-polycytidylic acid (Poly I:C), a synthetic analog of viral double-stranded RNA, while upregulating the expression of other genes with antiviral activity. Hence, we conclude that ALOS4 does not prevent IFN signaling, but rather supports the antiviral response by upregulating the expression of interferon-response genes in an interferon-independent manner.  相似文献   

12.
Many efforts have been made in the field of nanotechnology to improve the local and sustained release of drugs, which may be helpful to overcome the present limitations in the treatment of knee OA. Nano-/microparticles and/or hydrogels can be now engineered to improve the administration and intra-articular delivery of specific drugs, targeting molecular pathways and pathogenic mechanisms involved in OA progression and remission. In order to summarize the current state of this field, a systematic review of the literature was performed and 45 relevant studies were identified involving both animal models and humans. We found that polymeric nanoparticles loaded with anti-inflammatory drugs (i.e., dexamethasone or celecoxib) are the most frequently investigated drug delivery systems, followed by microparticles and hydrogels. In particular, the nanosystem most frequently used in preclinical research consists of PLGA-nanoparticles loaded with corticosteroids and non-steroidal anti-inflammatory drugs. Overall, improvement in histological features, reduction in joint inflammation, and improvement in clinical scores in patients were observed. The last advances in the field of nanotechnology could offer new opportunities to treat patients affected by knee OA, including those with previous meniscectomy. New smart drug delivery approaches, based on nanoparticles, microparticles, and hydrogels, may enhance the therapeutic potential of intra-articular agents by increasing the permanence of selected drugs inside the joint and better targeting specific receptors and tissues.  相似文献   

13.
14.
This study was designed to determine the effect of acute caffeine (CAF) administration, which exerts a broad spectrum of anti-inflammatory activity, on the synthesis of pro-inflammatory cytokines and their receptors in the hypothalamus and choroid plexus (ChP) during acute inflammation caused by the injection of bacterial endotoxin—lipopolysaccharide (LPS). The experiment was performed on 24 female sheep randomly divided into four groups: control; LPS treated (iv.; 400 ng/kg of body mass (bm.)); CAF treated (iv.; 30 mg/kg of bm.); and LPS and CAF treated. The animals were euthanized 3 h after the treatment. It was found that acute administration of CAF suppressed the synthesis of interleukin (IL-1β) and tumor necrosis factor (TNF)α, but did not influence IL-6, in the hypothalamus during LPS-induced inflammation. The injection of CAF reduced the LPS-induced expression of TNF mRNA in the ChP. CAF lowered the gene expression of IL-6 cytokine family signal transducer (IL6ST) and TNF receptor superfamily member 1A (TNFRSF1) in the hypothalamus and IL-1 type II receptor (IL1R2) in the ChP. Our study on the sheep model suggests that CAF may attenuate the inflammatory response at the hypothalamic level and partly influence the inflammatory signal generated by the ChP cells. This suggests the potential of CAF to suppress neuroinflammatory processes induced by peripheral immune/inflammatory challenges.  相似文献   

15.
Osteoarthritis (OA) is a chronic disease affecting the whole joint, which still lacks a disease-modifying treatment. This suggests an incomplete understanding of underlying molecular mechanisms. The Wnt/β-catenin pathway is involved in different pathophysiological processes of OA. Interestingly, both excessive stimulation and suppression of this pathway can contribute to the pathogenesis of OA. microRNAs have been shown to regulate different cellular processes in different diseases, including the metabolic activity of chondrocytes and osteocytes. To bridge these findings, here we attempt to give a conclusive overview of microRNA regulation of the Wnt/β-catenin pathway in bone and cartilage, which may provide insights to advance the development of miRNA-based therapeutics for OA treatment.  相似文献   

16.
Rheumatoid arthritis (RA) is an inflammatory disease characterized by a variety of symptoms and pathologies often presenting with polyarthritis. The primary symptom in the initial stage is joint swelling due to synovitis. With disease progression, cartilage and bone are affected to cause joint deformities. Advanced osteoarticular destruction and deformation can cause irreversible physical disabilities. Physical disabilities not only deteriorate patients’ quality of life but also have substantial medical economic effects on society. Therefore, prevention of the progression of osteoarticular destruction and deformation is an important task. Recent studies have progressively improved our understanding of the molecular mechanism by which synovitis caused by immune disorders results in activation of osteoclasts; activated osteoclasts in turn cause bone destruction and para-articular osteoporosis. In this paper, we review the mechanisms of bone metabolism under physiological and RA conditions, and we describe the effects of therapeutic intervention against RA on bone.  相似文献   

17.
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by parenchymal scarring, leading progressively to alveolar architecture distortion, respiratory failure, and eventually death. Currently, there is no effective treatment for IPF. Previously, 3′5-dimaleamylbenzoic acid (3′5-DMBA), a maleimide, demonstrated pro-apoptotic, anti-inflammatory, and anti-cancer properties; however, its potential therapeutic effects on IPF have not been addressed. Bleomycin (BLM) 100 U/kg was administered to CD1 mice through an osmotic minipump. After fourteen days of BLM administration, 3′5-DMBA (6 mg/kg or 10 mg/kg) and its vehicle carboxymethylcellulose (CMC) were administered intragastrically every two days until day 26. On day 28, all mice were euthanized. The 3′5-DMBA effect was assessed by histological and immunohistochemical staining, as well as by RT-qPCR. The redox status on lung tissue was evaluated by determining the glutathione content and the GSH/GSSG ratio. 3′5-DMBA treatment re-established typical lung histological features and decreased the expression of BLM-induced fibrotic markers: collagen, α-SMA, and TGF-β1. Furthermore, 3′5-DMBA significantly reduced the expression of genes involved in fibrogenesis. In addition, it decreased reduced glutathione and increased oxidized glutathione content without promoting oxidative damage to lipids, as evidenced by the decrease in the lipid peroxidation marker 4-HNE. Therefore, 3′5-DMBA may be a promising candidate for IPF treatment.  相似文献   

18.
Increasing evidences suggest that inflammation plays an important role in the pathogenesis of coronary artery disease (CAD). Numerous inflammatory cytokines and related genes mediate adverse cardiovascular events in patients with CAD, such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and Homer in the present study. The study was carried out on 163 CAD patients at different stages and 68 controls. The gene expression of Homer1, Homer2, Homer3, IL-1β, and TNF-α in the peripheral blood leukocytes were measured by real-time polymerase chain reaction. The mRNA levels of Homer1, IL-1β, and TNF-α in CAD patients were significantly higher than those in the control group, but not Homer2 and Homer3. However, there was no considerable difference in the mRNA levels of Homer1, IL-1β, and TNF-α among AMI, UAP, and SAP three subgroups of CAD. The receiver operating characteristic (ROC) curves showed that Homer1 had a better diagnostic value for UAP patients compared with IL-1β and TNF-α. Like IL-1β and TNF-α, Homer1 may also be an important participant of atherosclerotic plaque development and eventually rupture. The results of the present study may provide an important basis for diagnosing CAD patients, and provide new therapeutic targets for CAD.  相似文献   

19.
Palmitoylethanolamide (PEA) belongs to the class of N-acylethanolamine and is an endogenous lipid potentially useful in a wide range of therapeutic areas; products containing PEA are licensed for use in humans as a nutraceutical, a food supplement, or food for medical purposes for its analgesic and anti-inflammatory properties demonstrating efficacy and tolerability. However, the exogenously administered PEA is rapidly inactivated; in this process, fatty acid amide hydrolase (FAAH) plays a key role both in hepatic metabolism and in intracellular degradation. So, the aim of the present study was the design and synthesis of PEA analogues that are more resistant to FAAH-mediated hydrolysis. A small library of PEA analogues was designed and tested by molecular docking and density functional theory calculations to find the more stable analogue. The computational investigation identified RePEA as the best candidate in terms of both synthetic accessibility and metabolic stability to FAAH-mediated hydrolysis. The selected compound was synthesized and assayed ex vivo to monitor FAAH-mediated hydrolysis and to confirm its anti-inflammatory properties. 1H-NMR spectroscopy performed on membrane samples containing FAAH in integral membrane protein demonstrated that RePEA is not processed by FAAH, in contrast with PEA. Moreover, RePEA retains PEA’s ability to inhibit LPS-induced cytokine release in both murine N9 microglial cells and human PMA-THP-1 cells.  相似文献   

20.
This study investigated the effects of l-glutamine (Gln) and/or l-leucine (Leu) administration on sepsis-induced skeletal muscle injuries. C57BL/6J mice were subjected to cecal ligation and puncture to induce polymicrobial sepsis and then given an intraperitoneal injection of Gln, Leu, or Gln plus Leu beginning at 1 h after the operation with re-injections every 24 h. All mice were sacrificed on either day 1 or day 4 after the operation. Blood and muscles were collected for analysis of inflammation and oxidative damage-related biomolecules. Results indicated that both Gln and Leu supplementation alleviated sepsis-induced skeletal muscle damage by reducing monocyte infiltration, calpain activity, and mRNA expression levels of inflammatory cytokines and hypoxia-inducible factor-1α. Furthermore, septic mice treated with Gln had higher percentages of blood anti-inflammatory monocytes and muscle M2 macrophages, whereas Leu treatment enhanced the muscle expressions of mitochondrion-related genes. However, there were no synergistic effects when Gln and Leu were simultaneously administered. These findings suggest that both Gln and Leu had prominent abilities to attenuate inflammation and degradation of skeletal muscles in the early and/or late phases of sepsis. Moreover, Gln promoted the switch of leukocytes toward an anti-inflammatory phenotype, while Leu treatment maintained muscle bioenergetic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号