首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The insulin receptor (IR) is critically involved in maintaining glucose homeostasis. It undergoes proteolytic cleavage by proprotein convertases, which is an essential step for its activation. The importance of the insulin receptor in liver is well established, but its role in pancreatic β cells is still controversial. In this study, we investigated the cleavage of the IR by the proprotein convertase FURIN in β cells and hepatocytes, and the contribution of the IR in pancreatic β cells and liver to glucose homeostasis. β-cell-specific Furin knockout (βFurKO) mice were glucose intolerant, but liver-specific Furin knockout (LFurKO) mice were normoglycemic. Processing of the IR was blocked in βFurKO cells, but unaffected in LFurKO mice. Most strikingly, glucose homeostasis in β-cell-specific IR knockout (βIRKO) mice was normal in younger mice (up to 20 weeks), and only mildly affected in older mice (24 weeks). In conclusion, FURIN cleaves the IR non-redundantly in β cells, but redundantly in liver. Furthermore, we demonstrated that the IR in β cells plays a limited role in glucose homeostasis.  相似文献   

3.
The tumor microenvironment plays a critical role in defining the growth and malignancy of solid tumors. Extracellular matrix (ECM) proteins such as collagen, vitronectin, and fibronectin are major components of the tumor microenvironment. Tumor growth-promoting reciprocal interaction between ECM and cytoplasmic proteins is regulated by the cell surface receptors called integrins. This study investigated the mechanism by which integrin β1 promotes pancreatic tumor growth. In MIA PaCa-2 pancreatic cancer cell line, the loss of integrin β1 protein reduced the ability of cells to proliferate in a 3D matrix and compromised the ability to form a focal adhesion complex. Decreased expression of integrin α5 was observed in KO cells, which resulted in impaired cell spreading and adhesion on vitronectin and fibronectin. Reduced expression of the integrin-associated protein, kindlin-2 was also recorded. The downregulation of kindlin-2 decreased the phosphorylation of Smad2/3 by reducing the expression of TGF-β receptor 2. These results unravel a new mechanism of integrin β1 in tumor growth by modifying the expression of kindlin-2 and TGF-β receptor 2 signaling.  相似文献   

4.
Accumulation of calcium in energized mitochondria of pancreatic β-cells is emerging as a crucial process for pancreatic β-cell function. β-cell mitochondria sense and shape calcium signals, linking the metabolism of glucose and other secretagogues to the generation of signals that promote insulin secretion during nutrient stimulation. Here, we describe the role of mitochondrial calcium signaling in pancreatic β-cell function. We report the latest pharmacological and genetic findings, including the first mitochondrial calcium-targeted intervention strategies developed to modulate pancreatic β-cell function and their potential relevance in the context of diabetes.  相似文献   

5.
There is a need to develop identification tests for Metabolism Disrupting Chemicals (MDCs) with diabetogenic activity. Here we used the human EndoC-βH1 β-cell line, the rat β-cell line INS-1E and dispersed mouse islet cells to assess the effects of endocrine disruptors on cell viability and glucose-stimulated insulin secretion (GSIS). We tested six chemicals at concentrations within human exposure (from 0.1 pM to 1 µM). Bisphenol-A (BPA) and tributyltin (TBT) were used as controls while four other chemicals, namely perfluorooctanoic acid (PFOA), triphenylphosphate (TPP), triclosan (TCS) and dichlorodiphenyldichloroethylene (DDE), were used as “unknowns”. Regarding cell viability, BPA and TBT increased cell death as previously observed. Their mode of action involved the activation of estrogen receptors and PPARγ, respectively. ROS production was a consistent key event in BPA-and TBT-treated cells. None of the other MDCs tested modified viability or ROS production. Concerning GSIS, TBT increased insulin secretion while BPA produced no effects. PFOA decreased GSIS, suggesting that this chemical could be a “new” diabetogenic agent. Our results indicate that the EndoC-βH1 cell line is a suitable human β-cell model for testing diabetogenic MDCs. Optimization of the test methods proposed here could be incorporated into a set of protocols for the identification of MDCs.  相似文献   

6.
Methylmercury (MeHg), a long-lasting organic pollutant, is known to induce cytotoxic effects in mammalian cells. Epidemiological studies have suggested that environmental exposure to MeHg is linked to the development of diabetes mellitus (DM). The exact molecular mechanism of MeHg-induced pancreatic β-cell cytotoxicity is still unclear. Here, we found that MeHg (1-4 μM) significantly decreased insulin secretion and cell viability in pancreatic β-cell-derived RIN-m5F cells. A concomitant elevation of mitochondrial-dependent apoptotic events was observed, including decreased mitochondrial membrane potential and increased proapoptotic (Bax, Bak, p53)/antiapoptotic (Bcl-2) mRNA ratio, cytochrome c release, annexin V-Cy3 binding, caspase-3 activity, and caspase-3/-7/-9 activation. Exposure of RIN-m5F cells to MeHg (2 μM) also induced protein expression of endoplasmic reticulum (ER) stress-related signaling molecules, including C/EBP homologous protein (CHOP), X-box binding protein (XBP-1), and caspase-12. Pretreatment with 4-phenylbutyric acid (4-PBA; an ER stress inhibitor) and specific siRNAs for CHOP and XBP-1 significantly inhibited their expression and caspase-3/-12 activation in MeHg-exposed RIN-mF cells. MeHg could also evoke c-Jun N-terminal kinase (JNK) activation and reactive oxygen species (ROS) generation. Antioxidant N-acetylcysteine (NAC; 1mM) or 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox; 100 μM) markedly prevented MeH-induced ROS generation and decreased cell viability in RIN-m5F cells. Furthermore, pretreatment of cells with SP600125 (JNK inhibitor; 10 μM) or NAC (1 mM) or transfection with JNK-specific siRNA obviously attenuated the MeHg-induced JNK phosphorylation, CHOP and XBP-1 protein expression, apoptotic events, and insulin secretion dysfunction. NAC significantly inhibited MeHg-activated JNK signaling, but SP600125 could not effectively reduce MeHg-induced ROS generation. Collectively, these findings demonstrate that the induction of ROS-activated JNK signaling is a crucial mechanism underlying MeHg-induced mitochondria- and ER stress-dependent apoptosis, ultimately leading to β-cell death.  相似文献   

7.
The dysregulation of the β-cell functional mass, which is a reduction in the number of β-cells and their ability to secure adequate insulin secretion, represents a key mechanistic factor leading to the onset of type 2 diabetes (T2D). Obesity is recognised as a leading cause of β-cell loss and dysfunction and a risk factor for T2D. The natural history of β-cell failure in obesity-induced T2D can be divided into three steps: (1) β-cell compensatory hyperplasia and insulin hypersecretion, (2) insulin secretory dysfunction, and (3) loss of β-cell mass. Adipose tissue (AT) secretes many hormones/cytokines (adipokines) and fatty acids that can directly influence β-cell function and viability. As this secretory pattern is altered in obese and diabetic patients, it is expected that the cross-talk between AT and pancreatic β-cells could drive the maintenance of the β-cell integrity under physiological conditions and contribute to the reduction in the β-cell functional mass in a dysmetabolic state. In the current review, we summarise the evidence of the ability of the AT secretome to influence each step of β-cell failure, and attempt to draw a timeline of the alterations in the adipokine secretion pattern in the transition from obesity to T2D that reflects the progressive deterioration of the β-cell functional mass.  相似文献   

8.
Progressive loss and dysfunction of islet β-cells has not yet been solved in the treatment of diabetes. Regenerating protein (Reg) has been identified as a trophic factor which is demonstrated to be associated with pancreatic tissue regeneration. We previously produced recombinant Reg3α protein (rReg3α) and proved that it protects against acute pancreatitis in mice. Whether rReg3α protects islet β-cells in diabetes has been elusive. In the present study, rReg3α stimulated MIN6 cell proliferation and resisted STZ-caused cell death. The protective effect of rReg3α was also found in mouse primary islets. In BALB/c mice, rReg3α administration largely alleviated STZ-induced diabetes by the preservation of β-cell mass. The protective mechanism could be attributed to Akt/Bcl-2/-xL activation and GRP78 upregulation. Scattered insulin-expressing cells and clusters with small size, low insulin density, and exocrine distribution were observed and considered to be neogenic. In isolated acinar cells with wheat germ agglutinin (WGA) labeling, rReg3α treatment generated insulin-producing cells through Stat3/Ngn3 signaling, but these cells were not fully functional in response to glucose stimulation. Our results demonstrated that rReg3α resists STZ-induced β-cell death and promotes β-cell regeneration. rReg3α could serve as a potential drug for β-cell maintenance in anti-diabetic treatment.  相似文献   

9.
A huge effort has been devoted to developing drugs targeting integrins over 30 years, because of the primary roles of integrins in the cell-matrix milieu. Five αv-containing integrins, in the 24 family members, have been a central target of fibrosis. Currently, a small molecule against αvβ1 is undergoing a clinical trial for NASH-associated fibrosis as a rare agent aiming at fibrogenesis. Latent TGFβ activation, a distinct talent of αv-integrins, has been intriguing as a therapeutic target. None of the αv-integrin inhibitors, however, has been in the clinical market. αv-integrins commonly recognize an Arg-Gly-Asp (RGD) sequence, and thus the pharmacophore of inhibitors for the 5-integrins is based on the same RGD structure. The RGD preference of the integrins, at the same time, dilutes ligand specificity, as the 5-integrins share ligands containing RGD sequence such as fibronectin. With the inherent little specificity in both drugs and targets, “disease specificity” has become less important for the inhibitors than blocking as many αv-integrins. In fact, an almighty inhibitor for αv-integrins, pan-αv, was in a clinical trial. On the contrary, approved integrin inhibitors are all specific to target integrins, which are expressed in a cell-type specific manner: αIIbβ3 on platelets, α4β1, α4β7 and αLβ2 on leukocytes. Herein, “disease specific” integrins would serve as attractive targets. α8β1 and α11β1 are selectively expressed in hepatic stellate cells (HSCs) and distinctively induced upon culture activation. The exceptional specificity to activated HSCs reflects a rather “pathology specific” nature of these new integrins. The monoclonal antibodies against α8β1 and α11β1 in preclinical examinations may illuminate the road to the first medical agents.  相似文献   

10.
11.
The pathophysiology of type 2 diabetes involves insulin and glucagon. Protein kinase C (Pkc)-δ, a serine–threonine kinase, is ubiquitously expressed and involved in regulating cell death and proliferation. However, the role of Pkcδ in regulating glucagon secretion in pancreatic α-cells remains unclear. Therefore, this study aimed to elucidate the physiological role of Pkcδ in glucagon secretion from pancreatic α-cells. Glucagon secretions were investigated in Pkcδ-knockdown InR1G9 cells and pancreatic α-cell-specific Pkcδ-knockout (αPkcδKO) mice. Knockdown of Pkcδ in the glucagon-secreting cell line InR1G9 cells reduced glucagon secretion. The basic amino acid arginine enhances glucagon secretion via voltage-dependent calcium channels (VDCC). Furthermore, we showed that arginine increased Pkcδ phosphorylation at Thr505, which is critical for Pkcδ activation. Interestingly, the knockdown of Pkcδ in InR1G9 cells reduced arginine-induced glucagon secretion. Moreover, arginine-induced glucagon secretions were decreased in αPkcδKO mice and islets from αPkcδKO mice. Pkcδ is essential for arginine-induced glucagon secretion in pancreatic α-cells. Therefore, this study may contribute to the elucidation of the molecular mechanism of amino acid-induced glucagon secretion and the development of novel antidiabetic drugs targeting Pkcδ and glucagon.  相似文献   

12.
Metabolism-disrupting chemicals (MDCs) are endocrine disruptors with obesogenic and/or diabetogenic action. There is mounting evidence linking exposure to MDCs to increased susceptibility to diabetes. Despite the important role of glucagon in glucose homeostasis, there is little information on the effects of MDCs on α-cells. Furthermore, there are no methods to identify and test MDCs with the potential to alter α-cell viability and function. Here, we used the mouse α-cell line αTC1-9 to evaluate the effects of MDCs on cell viability and glucagon secretion. We tested six chemicals at concentrations within human exposure (from 0.1 pM to 1 µM): bisphenol-A (BPA), tributyltin (TBT), perfluorooctanoic acid (PFOA), triphenylphosphate (TPP), triclosan (TCS), and dichlorodiphenyldichloroethylene (DDE). Using two different approaches, MTT assay and DNA-binding dyes, we observed that BPA and TBT decreased α-cell viability via a mechanism that depends on the activation of estrogen receptors and PPARγ, respectively. These two chemicals induced ROS production, but barely altered the expression of endoplasmic reticulum (ER) stress markers. Although PFOA, TPP, TCS, and DDE did not alter cell viability nor induced ROS generation or ER stress, all four compounds negatively affected glucagon secretion. Our findings suggest that αTC1-9 cells seem to be an appropriate model to test chemicals with metabolism-disrupting activity and that the improvement of the test methods proposed herein could be incorporated into protocols for the screening of diabetogenic MDCs.  相似文献   

13.
Glycogen synthase kinase 3 beta (GSK-3β) is a serine/threonine protein kinase involved in multiple normal and pathological cell functions, including cell signalling and metabolism. GSK-3β is highly expressed in the onset and progression of multiple cancers with strong involvement in the regulation of proliferation, apoptosis, and chemoresistance. Multiple studies showed pro- and anti-cancer roles of GSK-3β creating confusion about the benefit of targeting GSK-3β for treating cancer. In this mini-review, we focus on the role of GSK-3β in pancreatic cancer. We demonstrate that the proposed anti-cancer roles of GSK-3β are not relevant to pancreatic cancer, and we argue why GSK-3β is, indeed, a very promising therapeutic target in pancreatic cancer.  相似文献   

14.
Pancreatic cancer (PC) is the seventh leading cause of cancer death worldwide, and remains one of our most recalcitrant and dismal diseases. In contrast to many other malignancies, there has not been a significant improvement in patient survival over the past decade. Despite advances in our understanding of the genetic alterations associated with this disease, an incomplete understanding of the underlying biology and lack of suitable animal models have hampered efforts to develop more effective therapies. LKB1 is a tumor suppressor that functions as a primary upstream kinase of adenine monophosphate-activated protein kinase (AMPK), which is an important mediator in the regulation of cell growth and epithelial polarity pathways. LKB1 is mutated in a significant number of Peutz–Jeghers syndrome (PJS) patients and in a small proportion of sporadic cancers, including PC; however, little is known about how LKB1 loss contributes to PC development. Here, we report that a reduction in Wnt/β-catenin activity is associated with LKB1 tumor-suppressive properties in PC. Remarkably, in vivo functional analyses of β-catenin in the Pdx-1-Cre LKB1L/L β-cateninL/L mouse model compared to LKB1 loss-driven cystadenoma demonstrate that the loss of β-catenin impairs cystadenoma development in the pancreas of Pdx-1Cre LKB1L/L mice and dramatically restores the normal development and functions of the pancreas. This study further determined the in vivo and in vitro therapeutic efficacy of the β-catenin inhibitor FH535 in suppressing LKB1 loss-driven cystadenoma and reducing PC progression that delineates the potential roles of Wnt/β-catenin signaling in PC harboring LKB1 deficiency.  相似文献   

15.
The opioid peptide β-endorphin coexists in the pituitary and brain in its αN-acetylated form, which does not bind to opioid receptors. We now report that these neuropeptides exhibited opposite effects in in vivo paradigms, in which ligands of the sigma type 1 receptor (σ1R) displayed positive effects. Thus, αN-acetyl β-Endorphin reduced vascular infarct caused by permanent unilateral middle cerebral artery occlusion and diminished the incidence of N-methyl-D-aspartate acid-promoted convulsive syndrome and mechanical allodynia caused by unilateral chronic constriction of the sciatic nerve. Moreover, αN-acetyl β-Endorphin reduced the analgesia of morphine, β-Endorphin and clonidine but enhanced that of DAMGO. All these effects were counteracted by β-Endorphin and absent in σ1R−/− mice. We observed that σ1Rs negatively regulate mu-opioid receptor (MOR)-mediated morphine analgesia by binding and sequestering G proteins. In this scenario, β-Endorphin promoted the exchange of σ2Rs by G proteins at σ1R oligomers and increased the regulation of G proteins by MORs. The opposite was observed for the αN-acetyl derivative, as σ1R oligomerization decreased and σ2R binding was favored, which displaced G proteins; thus, MOR-regulated transduction was reduced. Our findings suggest that the pharmacological β-Endorphin-specific epsilon receptor is a σ1R-regulated MOR and that β-Endorphin and αN-acetyl β-Endorphin are endogenous ligands of σ1R.  相似文献   

16.
Diabetes is a chronic metabolic disorder characterized by inappropriately elevated glucose levels as a result of impaired pancreatic β cell function and insulin resistance. Extensive studies have been conducted to elucidate the mechanism involved in the development of β cell failure and death under diabetic conditions such as hyperglycemia, hyperlipidemia, and inflammation. Of the plethora of proposed mechanisms, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and oxidative stress have been shown to play a central role in promoting β cell dysfunction. It has become more evident in recent years that these 3 factors are closely interrelated and importantly aggravate each other. Oxidative stress in particular is of great interest to β cell health and survival as it has been shown that β cells exhibit lower antioxidative capacity. Therefore, this review will focus on discussing factors that contribute to the development of oxidative stress in pancreatic β cells and explore the downstream effects of oxidative stress on β cell function and health. Furthermore, antioxidative capacity of β cells to counteract these effects will be discussed along with new approaches focused on preserving β cells under oxidative conditions.  相似文献   

17.
Changes in the molecular structure of synthetic cathinones has led to an increase in the number of novel emerging drugs in the illicit drug market at an unprecedented rate. Unfortunately, little is known about the neuropsychopharmacology of recently emerged halogen-substituted α-PVP derivatives. Thus, the aim of this study was to investigate the role of para- and meta-halogen (F-, Cl-, and Br-) substitutions on the in vitro, in silico, and in vivo effects of α-pyrrolidinopentiophenone (α-PVP) derivatives. HEK293 cells expressing the human dopamine or serotonin transporter (hDAT and hSERT) were used for the uptake inhibition and transporter affinity assays. Molecular docking was used to model the interaction mechanism against DAT. Swiss CD-1 mice were used for the horizontal locomotor activity, open field test, and conditioned place preference paradigm. All compounds demonstrated potent DA uptake inhibition and higher DAT selectivity than cocaine. Meta-substituted cathinones showed higher DAT/SERT ratios than their para- analogs, which correlates with an increased psychostimulant effect in vivo and with different meta- and para-in silico interactions at DAT. Moreover, all compounds induced rewarding and acute anxiogenic effects in mice. In conclusion, the present study demonstrates the role of meta- and para-halogen substitutions in the mechanism of action and provides the first evidence of the rewarding and anxiety-like properties of halogenated α-PVP derivatives.  相似文献   

18.
19.
β-cells in the islets of Langerhans of the pancreas secrete insulin in response to the glucose concentration in the blood. When these pancreatic β-cells are damaged, diabetes develops through glucose intolerance caused by insufficient insulin secretion. High molecular weight polysaccharides, such as heparin and heparan sulfate (HS) proteoglycans, and HS-degrading enzymes, such as heparinase, participate in the protection, maintenance, and enhancement of the functions of pancreatic islets and β-cells, and the demand for studies on glycobiology within the field of diabetes research has increased. This review introduces the roles of complex glycoconjugates containing high molecular weight polysaccharides and their degrading enzymes in pancreatic islets and β-cells, including those obtained in studies conducted by us earlier. In addition, from the perspective of glycobiology, this study proposes the possibility of application to diabetes medicine.  相似文献   

20.
Type 2 diabetes (T2D) typically occurs in the setting of obesity and insulin resistance, where hyperglycemia is associated with decreased pancreatic β-cell mass and function. Loss of β-cell mass has variably been attributed to β-cell dedifferentiation and/or death. In recent years, it has been proposed that circulating epigenetically modified DNA fragments arising from β cells might be able to report on the potential occurrence of β-cell death in diabetes. Here, we review published literature of DNA-based β-cell death biomarkers that have been evaluated in human cohorts of islet transplantation, type 1 diabetes, and obesity and type 2 diabetes. In addition, we provide new data on the applicability of one of these biomarkers (cell free unmethylated INS DNA) in adult cohorts across a spectrum from obesity to T2D, in which no significant differences were observed, and compare these findings to those previously published in youth cohorts where differences were observed. Our analysis of the literature and our own data suggest that β-cell death may occur in subsets of individuals with obesity and T2D, however a more sensitive method or refined study designs are needed to provide better alignment of sampling with disease progression events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号