首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal.  相似文献   

2.
Glucosinolates are an important class of secondary metabolites in Brassicales plants with a critical role in chemical defense. Glucosinolates are chemically inactive but can be hydrolyzed by myrosinases to produce a range of chemically active compounds toxic to herbivores and pathogens, thereby constituting the glucosinolate–myrosinase defense system or the mustard oil bomb. During the evolution, Brassicales plants have developed not only complex biosynthetic pathways for production of a large number of glucosinolate structures but also different classes of myrosinases that differ in catalytic mechanisms and substrate specificity. Studies over the past several decades have made important progress in the understanding of the cellular and subcellular organization of the glucosinolate–myrosinase system for rapid and timely detonation of the mustard oil bomb upon tissue damage after herbivore feeding and pathogen infection. Progress has also been made in understanding the mechanisms that herbivores and pathogens have evolved to counter the mustard oil bomb. In this review, we summarize our current understanding of the function and organization of the glucosinolate–myrosinase system in Brassicales plants and discuss both the progresses and future challenges in addressing this complex defense system as an excellent model for analyzing plant chemical defense.  相似文献   

3.
Plants have evolved several adaptive strategies through physiological changes in response to herbivore attacks. Plant secondary metabolites (PSMs) are synthesized to provide defensive functions and regulate defense signaling pathways to safeguard plants against herbivores. Herbivore injury initiates complex reactions which ultimately lead to synthesis and accumulation of PSMs. The biosynthesis of these metabolites is regulated by the interplay of signaling molecules comprising phytohormones. Plant volatile metabolites are released upon herbivore attack and are capable of directly inducing or priming hormonal defense signaling pathways. Secondary metabolites enable plants to quickly detect herbivore attacks and respond in a timely way in a rapidly changing scenario of pest and environment. Several studies have suggested that the potential for adaptation and/or resistance by insect herbivores to secondary metabolites is limited. These metabolites cause direct toxicity to insect pests, stimulate antixenosis mechanisms in plants to insect herbivores, and, by recruiting herbivore natural enemies, indirectly protect the plants. Herbivores adapt to secondary metabolites by the up/down regulation of sensory genes, and sequestration or detoxification of toxic metabolites. PSMs modulate multi-trophic interactions involving host plants, herbivores, natural enemies and pollinators. Although the role of secondary metabolites in plant-pollinator interplay has been little explored, several reports suggest that both plants and pollinators are mutually benefited. Molecular insights into the regulatory proteins and genes involved in the biosynthesis of secondary metabolites will pave the way for the metabolic engineering of biosynthetic pathway intermediates for improving plant tolerance to herbivores. This review throws light on the role of PSMs in modulating multi-trophic interactions, contributing to the knowledge of plant-herbivore interactions to enable their management in an eco-friendly and sustainable manner.  相似文献   

4.
To understand the role of allelochemicals in predator-prey interactions it is not sufficient to study the behavioral responses of predator and prey. One should elucidate the origin of the allelochemicals and be aware that it may be located at another trophic level. These aspects are reviewed for predator-prey interactions in general and illustrated in detail for interactions between predatory mites and herbivorous mites. In the latter system there is behavioral and chemical evidence for the involvement of the host plant in production of volatile allelochemicals upon damage by the herbivores with the consequence of attracting predators. These volatiles not only influence predator behavior, but also prey behavior and even the attractiveness of nearby plants to predators. Herbivorous mites disperse away from places with high concentrations of the volatiles, and undamaged plants attract more predators when previously exposed to volatiles from infested conspecific plants rather than from uninfested plants. The latter phenomenon may well be an example of plant-to-plant communication. The involvement of the host plant is probably not unique to the predator-herbivore-plant system under study. It may well be widespread since it makes sense from an evolutionary point of view. If so, prospects for application in pest control are wide open. These are discussed, and it is concluded that crop protection in the future should include tactics whereby man becomes an ally to plants in their strategies to manipulate predator-prey interactions through allelochemicals.  相似文献   

5.
Allelochemicals are assumed to possess specific biological properties and responses of an organism are external expressions of such properties. Based on this assumption, a mathematical model has been constructed to interpret the characteristic responses of an organism to allelochemicals. Several sets of experimental data have been compared with the model predictions; good agreement between the model and data is observed.  相似文献   

6.
Root herbivores can indirectly affect aboveground herbivores by altering the food quality of the plant. However, it is largely unknown whether plant genotypes differ in their response to root herbivores, leading to variable defensive phenotypes. In this study, we investigated whether root-feeding insect larvae (Agriotes sp. larvae, wireworms) induce different responses in Plantago lanceolata plants from lines selected for low and high levels of iridoid glycosides (IG). In the absence of wireworms, plants of the “high-IG line” contained approximately twofold higher levels of total IG and threefold higher levels of catalpol (one of the IG) in leaves than plants from the “low-IG line,” whereas both lines had similar levels of IG in roots. In response to wireworms, roots of plants from both lines showed increased concentrations of catalpol. Leaves of “low-IG line” plants increased catalpol concentrations in response to wireworms, whereas catalpol concentrations of leaves of “high-IG line” plants decreased. In contrast, glucose concentrations in roots of “low-IG” plants decreased, while they increased in “high-IG” plants after feeding by wireworms. The leaf volatile profile differed between the lines, but was not affected by root herbivores. In the field, leaf damage by herbivores was higher in wireworm-induced compared to noninduced “low-IG” plants and lower in wireworm-induced compared to noninduced “high-IG” plants, despite induction of catalpol in leaves of the “low-IG” plants and reduction in “high-IG” plants. This pattern might arise if damage is caused mainly by specialist herbivores for which catalpol may act as feeding stimulant rather than as deterrent. The present study documents for the first time that intraspecific variation in plant defense affects the outcome of plant-mediated interactions between root and shoot herbivores.  相似文献   

7.
In response to feeding damage, Lima bean releases herbivore-induced plant volatiles (HIPV), which are generally assumed to attract carnivorous arthropods as an indirect defense. While many studies have focused on such tritrophic interactions, few have investigated effects of HIPV on herbivores. I used natural herbivores of wild Lima bean and studied their responses to jasmonic acid-induced plants in an olfactometer and in feeding trials. Both Cerotoma ruficornis and Gynandrobrotica guerreroensis (Chrysomelidae) significantly preferred control plants to induced ones in the olfactometer, and they avoided feeding on induced plants. In contrast, Curculionidae significantly preferred HIPV of the induced plant to those of the control in one plant pair and did not choose in the case of a second pair. In feeding trials, no choice occurred in the first plant pair, while control leaves were preferred in the second. Release of HIPV deterred Chrysomelid herbivores and, thus, acted as a direct defense. This may be an important addition to indirect defensive effects. Whether or not HIPV released by induced plants attracted herbivorous Curculionidae, thus incurring ecological costs, varied among plants. Such differences could be related to various HIPV blends released by individual plants.  相似文献   

8.
Glandular trichomes are specialized hairs found on the surface of about 30% of all vascular plants and are responsible for a significant portion of a plant’s secondary chemistry. Glandular trichomes are an important source of essential oils, i.e., natural fragrances or products that can be used by the pharmaceutical industry, although many of these substances have evolved to provide the plant with protection against herbivores and pathogens. The storage compartment of glandular trichomes usually is located on the tip of the hair and is part of the glandular cell, or cells, which are metabolically active. Trichomes and their exudates can be harvested relatively easily, and this has permitted a detailed study of their metabolites, as well as the genes and proteins responsible for them. This knowledge now assists classical breeding programs, as well as targeted genetic engineering, aimed to optimize trichome density and physiology to facilitate customization of essential oil production or to tune biocide activity to enhance crop protection. We will provide an overview of the metabolic diversity found within plant glandular trichomes, with the emphasis on those of the Solanaceae, and of the tools available to manipulate their activities for enhancing the plant’s resistance to pests.  相似文献   

9.
Higher plant terpenoids: A phytocentric overview of their ecological roles   总被引:31,自引:0,他引:31  
Characteristics of higher plant terpenoids that result in mediation of numerous kinds of ecological interactions are discussed as a framework for this Symposium on Chemical Ecology of Terpenoids. However, the role of terpenoid mixtures, either constitutive or induced, their intraspecific qualitative and quantitative compositional variation, and their dosage-dependent effects are emphasized in subsequent discussions. It is suggested that little previous attention to these characteristics may have contributed to terpenoids having been misrepresented in some chemical defense theories. Selected phytocentric examples of terpenoid interactions are presented: (1) defense against generalist and specialist insect and mammalian herbivores, (2) defense against insect-vectored fungi and potentially pathogenic endophytic fungi, (3) attraction of entomophages and pollinators, (4) allelopathic effects that inhibit seed germination and soil bacteria, and (5) interaction with reactive troposphere gases. The results are integrated by discussing how these terpenoids may be contributing factors in determining some properties of terrestrial plant communities and ecosystems. A terrestrial phytocentric approach is necessitated due to the magnitude and scope of terpenoid interactions. This presentation has a more broadly based ecological perspective than the several excellent recent reviews of the ecological chemistry of terpenoids.  相似文献   

10.
The role of induced responses of tomato, Lycopersicon esculentum, in interspecific interactions between two polyphagous herbivores, the silverleaf whitefly, Bemisia argentifolii (WF), and the vegetable leafminer, Liriomyza trifolii (LM), was characterized in laboratory and field experiments. Feeding by LMs and WFs induced local and systemic production of putative defensive proteins, i.e., chitinases, peroxidases, -1,3-glucanases, and lysozymes. The magnitude of the induction for each defensive protein varied between species. Unlike WFs, LMs caused a 33% local reduction in total foliar protein content. In a whole-plant choice experiment, adult LM feeding, oviposition, and larval survival were reduced by 47.7%, 30.7%, and 26.5%, respectively, for the WF-infested host compared with the controls. Early WF infestations also had negative systemic (plant-mediated) effects on LMs. Adult LMs preferred leaves from control plants to leaves of plants that had been previously infested with WFs; no reciprocal effect of LMs on WFs were found. Feeding by Helicoverpa zea larvae, which has been shown previously to affect LM performance, had no effect on WF survival and development. LM natural population dynamics were monitored on WF-preinfested and control plants in a field experiment. WF-infested plants were less suitable for LM development with an overall 41% reduction in LM population density. These results demonstrate asymmetric direct and plant-mediated interspecific interactions between generalist herbivores feeding simultaneously on the same host. Possible mechanisms by which WFs overcome plant defenses are suggested. This ability may also contribute to WF success that makes them a major pest worldwide. The study supports the idea that over an evolutionary time scale, herbivores sharing the same host plant will automatically compete.  相似文献   

11.
Two signaling pathways, one involving salicylic acid and another involving jasmonic acid, participate in the expression of plant resistance to pathogens and insect herbivores. In this study, we report that stimulation of systemic acquired resistance in field-grown tomato plants with the salicylate mimic, benzothiadiazole: (1) attenuates the jasmonate-induced expression of the antiherbivore defense-related enzyme polyphenol oxidase, and (2) compromises host-plant resistance to larvae of the beet armyworm, Spodoptera exigua. Conversely, treatment of plants with jasmonic acid at concentrations that induce resistance to insects reduces pathogenesis-related protein gene expression induced by benzothiadiazole, and partially reverses the protective effect of benzothiadiazole against bacterial speck disease caused by Pseudomonas syringae pv. tomato. We conclude that effective utilization of induced plant resistance to the multiple pests typically encountered in agriculture will require understanding potential signaling conflicts in plant defense responses.  相似文献   

12.
13.
Datura wrightii is dimorphic for leaf trichome type in southern California. “Sticky” plants produce glandular trichomes that secrete acylsugars, whereas velvety plants produce nonglandular trichomes. Glandular trichomes confer resistance to some potential insect herbivores and are associated with reduced feeding in the field by two native coleopteran herbivores: the tobacco flea beetle, Epitrix hirtipennis, and a weevil, Trichobaris compacta. In contrast, another native beetle, Lema daturaphila, damages sticky and velvety plants similarly in the field. A series of choice and no-choice “ester removal” and “ester addition” feeding experiments were performed in the laboratory to evaluate the role of acylsugars in feeding by all three insect species. Consumption of sticky leaves after their esters were removed by washing was compared to consumption of unwashed sticky leaves and velvety leaves in ester removal experiments. Consumption of velvety leaves was measured after acylsugars were applied to those leaves in controlled amounts in the ester addition experiments. Consumption by E. hirtipennis was reduced by acylsugars in all experiments. Consumption by T. compacta was reduced by acylsugars in the ester removal experiments, but not in the ester addition experiments. The location of the acylsugars at the tip of a long trichome, rather than simply on the leaf surface, may be an important component of the biological activity of acylsugars against T. compacta in nature. Consumption by L. daturaphila was not significantly reduced by acylsugars in any experiment. The acylsugars caused no significant mortality of any of the three insect species.  相似文献   

14.
The plant genus Macaranga is known for its manifold mutualistic associations with ants. The plants provide food for the ants and in turn get protection from herbivores. Depending on the strength of the plant–ant interaction, the plant's investment in ants and the biotic defense derived from them is more or less effective. We conducted a comparative study on tannin content in 12 Macaranga species that were selected based on their associations with ants (three nonmyrmecophytes and nine myrmecophytes, three of which start their ontogeny as nonmyrmecophytes). Different developmental stages were investigated in three Macaranga species. Extracts of every individual plant analyzed for tannins were also tested for their effects on larval growth employing larvae of the common cutworm (Spodoptera littoralis). The studied Macaranga species differed significantly in their tannin contents as well as in the effects of their leaf extracts on the growth of S. littoralis larvae. A correlation analysis shows a connection between tannin contents and larval growth. High tannin contents and, thus more effective chemical defense, were observed in nonmyrmecophytic Macaranga species associated only facultatively with ants as compared to obligate myrmecophytes. Our study supports the hypothesis of a trade-off between chemical and biotic defense in the genus Macaranga.  相似文献   

15.
During evolution, plants have developed mechanisms to cope with and adapt to different types of stress, including microbial infection. Once the stress is sensed, signaling pathways are activated, leading to the induced expression of genes with different roles in defense. Mosses (Bryophytes) are non-vascular plants that diverged from flowering plants more than 450 million years ago, allowing comparative studies of the evolution of defense-related genes and defensive metabolites produced after microbial infection. The ancestral position among land plants, the sequenced genome and the feasibility of generating targeted knock-out mutants by homologous recombination has made the moss Physcomitrella patens an attractive model to perform functional studies of plant genes involved in stress responses. This paper reviews the current knowledge of inducible defense mechanisms in P. patens and compares them to those activated in flowering plants after pathogen assault, including the reinforcement of the cell wall, ROS production, programmed cell death, activation of defense genes and synthesis of secondary metabolites and defense hormones. The knowledge generated in P. patens together with comparative studies in flowering plants will help to identify key components in plant defense responses and to design novel strategies to enhance resistance to biotic stress.  相似文献   

16.
Carnivorous arthropods can use herbivore-induced plant volatiles to locate their herbivorous prey. In the field, carnivores are confronted with information from plants infested with herbivores that may differ in their suitability as prey. Discrimination by the predatory mite Phytoseiulus persimilis between volatiles from lima bean plants infested with the prey herbivore Tetranychus urticae, or plants infested with the nonprey caterpillar Spodoptera exigua, depends on spider mite density. In this article, we analyzed the chemical composition of the volatile blends from T. urticae-infested lima bean plants at different densities of spider mites, and from S. exigua-infested plants. Based on the behavioral preferences of P. persimilis and the volatile profiles, we selected compounds that potentially enable the mite to discriminate between T. urticae-induced and S. exigua-induced volatiles. Subsequently, we demonstrated in Y-tube olfactometer assays that the relatively large amounts of methyl salicylate and (3E, 7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene emitted by T. urticae-infested bean plants compared to S. exigua-infested plants enable the predators to discriminate. Our data show that specific compounds from complex herbivore-induced volatile blends can play an important role in the selective foraging behavior of natural enemies of herbivorous arthropods.  相似文献   

17.
How nitrogen (N) supply affects the induced defense of plants remains poorly understood. Here, we investigated the impacts of N supply on the defense induced in maize (Zea mays) against the fall armyworm (Spodoptera frugiperda). In the absence of herbivore attack or exogenous jasmonic acid (JA) application, N supply increased plant biomass and enhanced maize nutrient (soluble sugar and amino acid) contents and leaf area fed by S. frugiperda (the feeding leaf area of S. frugiperda larvae in maize supplemented with 52.2 and 156.6 mg/kg of N was 4.08 and 3.83 times that of the control, respectively). When coupled with herbivore attack or JA application, maize supplemented with 52.2 mg/kg of N showed an increased susceptibility to pests, while the maize supplemented with 156.6 mg/kg of N showed an improved defense against pests. The changes in the levels of nutrients, and the emissions of volatile organic compounds (VOCs) caused by N supply could explain the above opposite induced defense in maize. Compared with herbivore attack treatment, JA application enhanced the insect resistance in maize supplemented with 156.6 mg/kg of N more intensely, mainly reflecting a smaller feeding leaf area, which was due to indole emission and two upregulated defensive genes, MPI (maize proteinase inhibitor) and PAL (phenylalanine ammonia-lyase). Hence, the optimal N level and appropriate JA application can enhance plant-induced defense against pests.  相似文献   

18.
The tropical rainforest shrub Piper cenocladum, which is normally defended against herbivores by a mutualistic ant, contains three amides that have various defensive functions. While the ants are effective primarily against specialist herbivores, we hypothesized that these secondary compounds would be effective against a wider range of insects, thus providing a broad array of defenses against herbivores. We also tested whether a mixture of amides would be more effective against herbivores than individual amides. Diets spiked with amides were offered to five herbivores: a naïve generalist caterpillar (Spodoptera frugiperda), two caterpillar species that are monophagous on P. cenocladum (Eois spp.), leaf-cutting ants (Atta cephalotes), and an omnivorous ant (Paraponera clavata). Amides had negative effects on all insects, whether they were naïve, experienced, generalized, or specialized feeders. For Spodoptera, amide mixtures caused decreased pupal weights and survivorship and increased development times. Eois pupal weights, larval mass gain, and development times were affected by additions of individual amides, but increased parasitism and lower survivorship were caused only by the amide mixture. Amide mixtures also deterred feeding by the two ant species, and crude plant extracts were strongly deterrent to P. clavata. The mixture of all three amides had the most dramatic deterrent and toxic effects across experiments, with the effects usually surpassing expected additive responses, indicating that these compounds can act synergistically against a wide array of herbivores.  相似文献   

19.
The basidiomycete fungus Tilletia horrida causes rice kernel smut (RKS), a crucial disease afflicting hybrid-rice-growing areas worldwide, which results in significant economic losses. However, few studies have investigated the pathogenic mechanisms and functions of effectors in T. horrida. In this study, we found that the candidate effector ThSCSP_12 caused cell necrosis in the leaves of Nicotiana benthamiana. The predicted signal peptide (SP) of this protein has a secreting function, which is required for ThSCSP_12 to induce cell death. The 1- 189 amino acid (aa) sequences of ThSCSP_12 are sufficient to confer it the ability to trigger cell death in N. benthamiana. The expression of ThSCSP_12 was induced and up-regulated during T. horrida infection. In addition, we also found that ThSCSP_12 localized in both the cytoplasm and nucleus of plant cells and that nuclear localization of this protein is required to induce cell death. Furthermore, the ability of ThSCSP_12 to trigger cell death in N. benthamiana depends on the (RAR1) protein required for Mla12 resistance but not on the suppressor of the G2 allele of Skp1 (SGT1), heat shock protein 90 (HSP90), or somatic embryogenesis receptor-like kinase (SERK3). Crucially, however, ThSCSP_12 induced a defense response in N. benthamiana leaves; yet, the expression of multiple defense-related genes was suppressed in response to heterologous expression in host plants. To sum up, these results strongly suggest that ThSCSP_12 operates as an effector in T. horrida–host interactions.  相似文献   

20.
Cistus ladanifer exudate is a potent inhibitor of the sarcoplasmic reticulum Ca2+-ATPase (Ca2+-pump) of rabbit skeletal muscle, a well-established model for active transport that plays a leading role in skeletal muscle relaxation. The low concentration of exudate needed to produce 50% of the maximum inhibition of the sarcoplasmic reticulum Ca2+-ATPase activity, 40-60 microg/ml, suggests that eating only a few milligrams of C. ladanifer leaves can impair the relaxation of the mouth skeletal muscle of herbivores, as the exudate reaches up to 140 mg/g of dry leaves in summer season. The flavonoid fraction of the exudate accounts fully for the functional impairment of the sarcoplasmic reticulum produced by the exudate (up to a dose of 250-300 microg/ml). The flavonoids present in this exudate impair the skeletal muscle sarcoplasmic reticulum function at two different levels: (i) by inhibition of the Ca2+-ATPase activity, and (ii) by decreasing the steady state ATP-dependent Ca2+-accumulation. Among the exudate flavonoids, apigenin and 3,7-di-O-methyl kaempferol are the most potent inhibitors of the skeletal muscle sarcoplasmic reticulum. We conclude that the flavonoids of this exudate can elicit an avoidance reaction of the herbivores eating C. ladanifer leaves through impairment of mouth skeletal muscle relaxation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号