首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Periodontal ligament derived stem cells (PDLSC) are adult multipotent mesenchymal-like stem cells (MSCs) that can induce a promising immunomodulation to interact with immune cells for disease treatment. Metabolic reconfiguration has been shown to be involved in the immunomodulatory activity of MSCs. However, the underlying mechanisms are largely unknown, and it remains a challenging to establish a therapeutic avenue to enhance immunomodulation of endogenous stem cells for disease management. In the present study, RNA-sequencing (RNA-seq) analysis explores that curcumin significantly promotes PDLSC function through activation of MSC-related markers and metabolic pathways. In vitro stem cell characterization further confirms that self-renewal and multipotent differentiation capabilities are largely elevated in curcumin treated PDLSCs. Mechanistically, RNA-seq reveals that curcumin activates ERK and mTOR cascades through upregulating growth factor pathways for metabolic reconfiguration toward glycolysis. Interestingly, PDLSCs immunomodulation is significantly increased after curcumin treatment through activation of prostaglandin E2-Indoleamine 2,3 dioxygenase (PGE2-IDO) signaling, whereas inhibition of glycolysis activity by 2-deoxyglucose (2-DG) largely blocked immunomodulatory capacity of PDLSCs. Taken together, this study provides a novel pharmacological approach to activate endogenous stem cells through metabolic reprogramming for immunomodulation and tissue regeneration.  相似文献   

2.
Inflammation induces a wide response of the neuroendocrine system, which leads to modifications in all the endocrine axes. The hypothalamic–growth hormone (GH)–insulin-like growth factor-1 (IGF-1) axis is deeply affected by inflammation, its response being characterized by GH resistance and a decrease in circulating levels of IGF-1. The endocrine and metabolic responses to inflammation allow the organism to survive. However, in chronic inflammatory conditions, the inhibition of the hypothalamic–GH–IGF-1 axis contributes to the catabolic process, with skeletal muscle atrophy and cachexia. Here, we review the changes in pituitary GH secretion, IGF-1, and IGF-1 binding protein-3 (IGFBP-3), as well as the mechanism that mediated those responses. The contribution of GH and IGF-1 to muscle wasting during inflammation has also been analyzed.  相似文献   

3.
Oberbauer AM  German JB  Murray JD 《Lipids》2011,46(6):495-504
In a transgenic growth hormone (GH) mouse model, highly elevated GH increases overall growth and decreases adipose depots while low or moderate circulating GH enhances adipose deposition with differential effects on body growth. Using this model, the effects of low, moderate, and high chronic GH on fatty acid composition were determined for adipose and hepatic tissue and the metabolites of 20:4n-6 (arachidonic acid) were characterized to identify metabolic targets of action of elevated GH. The products of Δ-9 desaturase in hepatic, but not adipose, tissue were reduced in response to elevated GH. Proportional to the level of circulating GH, the products of Δ-5 and Δ-6 were increased in both adipose and hepatic tissue for the omega-6 lipids (e.g., 20:4n-6), while only the hepatic tissues showed an increase for omega-3 lipids (e.g., 22:6n-3). The eicosanoids, PGE2 and 12-HETE, were elevated with high GH but circulating thromboxane was not. Hepatic PTGS1 and 2 (COX1 and COX 2), SOD1, and FADS2 (Δ-6 desaturase) mRNAs were increased with elevated GH while FAS mRNA was reduced; SCD1 (stearoyl-coenzyme A desaturase) and SCD2 mRNA did not significantly differ. The present study showed that GH influences the net flux through various aspects of lipid metabolism and especially the desaturase metabolic processes. The combination of altered metabolism and tissue specificity suggest that the regulation of membrane composition and its effects on signaling pathways, including the production and actions of eicosanoids, can be mediated by the GH regulatory axis.  相似文献   

4.
The impacts of menopause on neurodegenerative diseases, especially the changes in steroid hormones, have been well described in cell models, animal models, and humans. However, the therapeutic effects of hormone replacement therapy on postmenopausal women with neurodegenerative diseases remain controversial. The steroid hormones, steroid hormone receptors, and downstream signal pathways in the brain change with aging and contribute to disease progression. Estrogen and progesterone are two steroid hormones which decline in circulation and the brain during menopause. Insulin-like growth factor 1 (IGF-1), which plays an import role in neuroprotection, is rapidly decreased in serum after menopause. Here, we summarize the actions of estrogen, progesterone, and IGF-1 and their signaling pathways in the brain. Since the incidence of Alzheimer’s disease (AD) is higher in women than in men, the associations of steroid hormone changes and AD are emphasized. The signaling pathways and cellular mechanisms for how steroid hormones and IGF-1 provide neuroprotection are also addressed. Finally, the molecular mechanisms of potential estrogen modulation on N-methyl-d-aspartic acid receptors (NMDARs) are also addressed. We provide the viewpoint of why hormone therapy has inconclusive results based on signaling pathways considering their complex response to aging and hormone treatments. Nonetheless, while diagnosable AD may not be treatable by hormone therapy, its preceding stage of mild cognitive impairment may very well be treatable by hormone therapy.  相似文献   

5.
Metabolic reprogramming of cancer is now considered a hallmark of many malignant tumors, including breast cancer, which remains the most commonly diagnosed cancer in women all over the world. One of the main challenges for the effective treatment of breast cancer emanates from the existence of a subpopulation of tumor-initiating cells, known as cancer stem cells (CSCs). Over the years, several pathways involved in the regulation of CSCs have been identified and characterized. Recent research has also shown that CSCs are capable of adopting a metabolic flexibility to survive under various stressors, contributing to chemo-resistance, metastasis, and disease relapse. This review summarizes the links between the metabolic adaptations of breast cancer cells and CSC-associated pathways. Identification of the drivers capable of the metabolic rewiring in breast cancer cells and CSCs and the signaling pathways contributing to metabolic flexibility may lead to the development of effective therapeutic strategies. This review also covers the role of these metabolic adaptation in conferring drug resistance and metastasis in breast CSCs.  相似文献   

6.
Clinical, epidemiological, and experimental evidence demonstrate non-cancer, cardiovascular, and endocrine effects of ionizing radiation exposure including growth hormone deficiency, obesity, metabolic syndrome, diabetes, and hyperinsulinemia. Insulin-like growth factor-1 (IGF-1) signaling perturbations are implicated in development of cardiovascular disease and metabolic syndrome. The minipig is an emerging model for studying radiation effects given its high analogy to human anatomy and physiology. Here we use a minipig model to study late health effects of radiation by exposing male Göttingen minipigs to 1.9–2.0 Gy X-rays (lower limb tibias spared). Animals were monitored for 120 days following irradiation and blood counts, body weight, heart rate, clinical chemistry parameters, and circulating biomarkers were assessed longitudinally. Collagen deposition, histolopathology, IGF-1 signaling, and mRNA sequencing were evaluated in tissues. Our findings indicate a single exposure induced histopathological changes, attenuated circulating IGF-1, and disrupted cardiac IGF-1 signaling. Electrolytes, lipid profiles, liver and kidney markers, and heart rate and rhythm were also affected. In the heart, collagen deposition was significantly increased and transforming growth factor beta-1 (TGF-beta-1) was induced following irradiation; collagen deposition and fibrosis were also observed in the kidney of irradiated animals. Our findings show Göttingen minipigs are a suitable large animal model to study long-term effects of radiation exposure and radiation-induced inhibition of IGF-1 signaling may play a role in development of late organ injuries.  相似文献   

7.
The rotation of the earth on its axis creates the environment of a 24 h solar day, which organisms on earth have used to their evolutionary advantage by integrating this timing information into their genetic make-up in the form of a circadian clock. This intrinsic molecular clock is pivotal for maintenance of synchronized homeostasis between the individual organism and the external environment to allow coordinated rhythmic physiological and behavioral function. Aryl hydrocarbon receptor (AhR) is a master regulator of dioxin-mediated toxic effects, and is, therefore, critical in maintaining adaptive responses through regulating the expression of phase I/II drug metabolism enzymes. AhR expression is robustly rhythmic, and physiological cross-talk between AhR signaling and circadian rhythms has been established. Increasing evidence raises a compelling argument that disruption of endogenous circadian rhythms contributes to the development of disease, including sleep disorders, metabolic disorders and cancers. Similarly, exposure to environmental pollutants through air, water and food, is increasingly cited as contributory to these same problems. Thus, a better understanding of interactions between AhR signaling and the circadian clock regulatory network can provide critical new insights into environmentally regulated disease processes. This review highlights recent advances in the understanding of the reciprocal interactions between dioxin-mediated AhR signaling and the circadian clock including how these pathways relate to health and disease, with emphasis on the control of metabolic function.  相似文献   

8.
In the eye, hyperosmolarity of the precorneal tear film triggers inflammation and the development of dry eye disease (DED), a highly prevalent condition that causes depression and disability in severe forms. A member of the insulin-like growth factor (IGF) family, the IGF binding protein-3 (IGFBP-3), is a pleiotropic protein with known roles in growth downregulation and survival. IGFBP-3 exerts these effects by blocking IGF-1 activation of the type 1 IGF-receptor (IGF-1R). Here, we examined a new IGF-independent role for IGFBP-3 in the regulation of mitochondrial and metabolic activity in ocular surface epithelial cells subject to hyperosmolar stress and in a mouse model of DED. We found that hyperosmolar stress decreased IGFBP-3 expression in vitro and in vivo. Treatment with exogenous IGFBP-3 induced an early, transient shift in IGF-1R to mitochondria, followed by IGFBP-3 nuclear accumulation. IGFBP-3 nuclear accumulation increased protein translation, blocked the hyperosmolar-mediated decrease in oxidative phosphorylation through the induction of mitochondrial hyperfusion, and restored corneal health in vivo. These data indicate that IGFBP-3 acts a stress response protein in ocular surface epithelia subject to hyperosmolar stress. These findings may lead to the development of first-in-class therapeutics to treat eye diseases with underlying mitochondrial dysfunction.  相似文献   

9.
Bone metabolism consists of a balance between bone formation and bone resorption, which is mediated by osteoblast and osteoclast activity, respectively. In order to ensure bone plasticity, the bone remodeling process needs to function properly. Mesenchymal stem cells differentiate into the osteoblast lineage by activating different signaling pathways, including transforming growth factor β (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1 (Wnt)/β-catenin pathways. Recent data indicate that bone remodeling processes are also epigenetically regulated by DNA methylation, histone post-translational modifications, and non-coding RNA expressions, such as micro-RNAs, long non-coding RNAs, and circular RNAs. Mutations and dysfunctions in pathways regulating the osteoblast differentiation might influence the bone remodeling process, ultimately leading to a large variety of metabolic bone diseases. In this review, we aim to summarize and describe the genetics and epigenetics of the bone remodeling process. Moreover, the current findings behind the genetics of metabolic bone diseases are also reported.  相似文献   

10.
Melatonin and resistance exercise alone have been shown to increase the levels of growth hormone (GH). The purpose of this study was to determine the effects of ingestion of a single dose of melatonin and heavy resistance exercise on serum GH, somatostatin (SST), and other hormones of the GH/insulin-like growth factor 1 (IGF-1) axis. Physically active males (n = 30) and females (n = 30) were randomly assigned to ingest either a melatonin supplement at 0.5 mg or 5.0 mg, or 1.0 mg of dextrose placebo. After a baseline blood sample, participants ingested the supplement and underwent blood sampling every 15 min for 60 min, at which point they underwent a single bout of resistance exercise with the leg press for 7 sets of 7 reps at 85% 1-RM. After exercise, participants provided additional blood samples every 15 min for a total of 120 min. Serum free GH, SST, IGF-1, IGFBP-1, and IGFBP-3 were determined with ELISA. Data were evaluated as the peak pre- and post-exercise values subtracted from baseline and the delta values analyzed with separate three-way ANOVA (p < 0.05). In males, when compared to placebo, 5.0 mg melatonin caused GH to increase (p = 0.017) and SST to decrease prior to exercise (p = 0.031), whereas both 0.5 and 5.0 mg melatonin were greater than placebo after exercise (p = 0.045) and less than placebo for SST. No significant differences occurred for IGF-1; however, males were shown to have higher levels of IGFBP-1 independent of supplementation (p = 0.004). The 5.0 mg melatonin dose resulted in higher IGFBP-3 in males (p = 0.017). In conclusion, for males 5.0 mg melatonin appears to increase serum GH while concomitantly lowering SST levels; however, when combined with resistance exercise both melatonin doses positively impacts GH levels in a manner not entirely dependent on SST.  相似文献   

11.
Numerous studies have shown that hedgehog inhibitors (iHHs) only partially block the growth of tumor cells, especially in vivo. Leukemia often expands in a nutrient-depleted environment (bone marrow and thymus). In order to identify putative signaling pathways implicated in the adaptive response to metabolically adverse conditions, we executed quantitative phospho-proteomics in T-cell acute lymphoblastic leukemia (T-ALL) cells subjected to nutrient-depleted conditions (serum starvation). We found important modulations of peptides phosphorylated by critical signaling pathways including casein kinase, mammalian target of rapamycin, and 5′AMP-activated kinase (AMPK). Surprisingly, in T-ALL cells, AMPK signaling was the most consistently downregulated pathway under serum-depleted conditions, and this coincided with increased GLI1 expression and sensitivity to iHHs, especially the GLI1/2 inhibitor GANT-61. Increased sensitivity to GANT-61 was also found following genetic inactivation of the catalytic subunit of AMPK (AMPKα1) or pharmacological inhibition of AMPK by Compound C. Additionally, patient-derived xenografts showing high GLI1 expression lacked activated AMPK, suggesting an important role for this signaling pathway in regulating GLI1 protein levels. Further, joint targeting of HH and AMPK signaling pathways in T-ALL cells by GANT-61 and Compound C significantly increased the therapeutic response. Our results suggest that metabolic adaptation that occurs under nutrient starvation in T-ALL cells increases responsiveness to HH pathway inhibitors through an AMPK-dependent mechanism and that joint therapeutic targeting of AMPK signaling and HH signaling could represent a valid therapeutic strategy in rapidly expanding tumors where nutrient availability becomes limiting.  相似文献   

12.
Following exposure to high doses of ionizing radiation, diverse strains of vertebrate species will manifest varying levels of radiation sensitivity. To understand the inter-strain cellular and molecular mechanisms of radiation sensitivity, two mouse strains with varying radiosensitivity (C3H/HeN, and CD2F1), were exposed to total body irradiation (TBI). Since Insulin-like Growth Factor-1 (IGF-1) signaling pathway is associated with radiosensitivity, we investigated the link between systemic or tissue-specific IGF-1 signaling and radiosensitivity. Adult male C3H/HeN and CD2F1 mice were irradiated using gamma photons at Lethal Dose-70/30 (LD70/30), 7.8 and 9.35 Gy doses, respectively. Those mice that survived up to 30 days post-irradiation, were termed the survivors. Mice that were euthanized prior to 30 days post-irradiation due to deteriorated health were termed decedents. The analysis of non-irradiated and irradiated survivor and decedent mice showed that inter-strain radiosensitivity and post-irradiation survival outcomes are associated with activation status of tissue and systemic IGF-1 signaling, nuclear factor erythroid 2–related factor 2 (Nrf2) activation, and the gene expression profile of cardiac mitochondrial energy metabolism pathways. Our findings link radiosensitivity with dysregulation of IGF-1 signaling, and highlight the role of antioxidant gene response and mitochondrial function in radiation sensitivity.  相似文献   

13.
Alzheimer’s disease (AD) has traditionally been discussed as a disease where serious cognitive decline is a result of Aβ-plaque accumulation, tau tangle formation, and neurodegeneration. Recently, it has been shown that metabolic dysregulation observed with insulin resistance and type-2 diabetes actively contributes to the progression of AD. One of the pathologies linking metabolic disease to AD is the release of inflammatory cytokines that contribute to the development of brain neuroinflammation and mitochondrial dysfunction, ultimately resulting in amyloid-beta peptide production and accumulation. Improving these metabolic impairments has been shown to be effective at reducing AD progression and improving cognitive function. The polyphenol resveratrol (RSV) improves peripheral metabolic disorders and may provide similar benefits centrally in the brain. RSV reduces inflammatory cytokine release, improves mitochondrial energetic function, and improves Aβ-peptide clearance by activating SIRT1 and AMPK. RSV has also been linked to improved cognitive function; however, the mechanisms of action are less defined. However, there is evidence to suggest that chronic RSV-driven AMPK activation may be detrimental to synaptic function and growth, which would directly impact cognition. This review will discuss the benefits and adverse effects of RSV on the brain, highlighting the major signaling pathways and some of the gaps surrounding the use of RSV as a treatment for AD.  相似文献   

14.
Brain aging is linked to certain types of neurodegenerative diseases and identifying new therapeutic targets has become critical. Melatonin, a pineal hormone, associates with molecules and signaling pathways that sense and influence energy metabolism, autophagy, and circadian rhythms, including insulin-like growth factor 1 (IGF-1), Forkhead box O (FoxOs), sirtuins and mammalian target of rapamycin (mTOR) signaling pathways. This review summarizes the current understanding of how melatonin, together with molecular, cellular and systemic energy metabolisms, regulates epigenetic processes in the neurons. This information will lead to a greater understanding of molecular epigenetic aging of the brain and anti-aging mechanisms to increase lifespan under healthy conditions.  相似文献   

15.
16.
Zebrafish have become a popular animal model for studying various biological processes and human diseases. The metabolic pathways and players conserved among zebrafish and mammals facilitate the use of zebrafish to understand the pathological mechanisms underlying various metabolic disorders in humans. Adipocytes play an important role in metabolic homeostasis, and zebrafish adipocytes have been characterized. However, a versatile and reliable zebrafish model for long-term monitoring of adipose tissues has not been reported. In this study, we generated stable transgenic zebrafish expressing enhanced green fluorescent protein (EGFP) in adipocytes. The transgenic zebrafish harbored adipose tissues that could be detected using GFP fluorescence and the morphology of single adipocyte could be investigated in vivo. In addition, we demonstrated the applicability of this model to the long-term in vivo imaging of adipose tissue development and regulation based on nutrition. The transgenic zebrafish established in this study may serve as an excellent tool to advance the characterization of white adipose tissue in zebrafish, thereby aiding the development of therapeutic interventions to treat metabolic diseases in humans.  相似文献   

17.
18.
19.
All cells rely on nutrients to supply energy and carbon building blocks to support cellular processes. Over time, eukaryotes have developed increasingly complex systems to integrate information about available nutrients with the internal state of energy stores to activate the necessary processes to meet the immediate and ongoing needs of the cell. One such system is the network of soluble and membrane-associated inositol phosphates that coordinate the cellular responses to nutrient uptake and utilization from growth factor signaling to energy homeostasis. In this review, we discuss the coordinated interactions of the inositol polyphosphates, inositol pyrophosphates, and phosphoinositides in major metabolic signaling pathways to illustrate the central importance of the inositol phosphate signaling network in nutrient responses.  相似文献   

20.
Myostatin (MSTN), a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph), and zinc metallopeptidase STE24 (Zmpste24). In addition, kyphoscoliosis peptidase (Ky), which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA) pathways (Dgki, Dgkz, Plcd4) were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号