首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dry root tuber of Stephania epigaea contained 36.5% starch, indicating a good starch source. In this study, starch was isolated from S. epigaea. Its morphology, physicochemical, and functional properties were investigated and compared with potato and maize starches. S. epigaea starch had small spherical granules with centric hila and large ellipsoidal granules with eccentric hila, and granule sizes varied from 7 to 40 μm. The starch had 33.9% amylose content and B-type crystallinity. The gelatinization onset, peak, and final temperatures were 59.4, 62.3, and 66.2°C, respectively, and were lower than those of potato and maize starches, but the enthalpy (16.3 J/g) was higher than that of potato and maize starches. The peak, hot, final, and breakdown viscosities were 2227, 1623, 2149, and 594 dPa s, respectively, and were significantly higher than those of maize starch and lower than those of potato starch. S. epigaea starch was more susceptible to amylase hydrolysis and in vitro digestion than potato starch and less than maize starch. This study would be useful for the applications of starch from S. epigaea in the food and non-food industries.  相似文献   

2.
Corn starch and starches separated from different potato cultivars were acetylated to evaluate the effect of plant source on the physicochemical, morphological, thermal, rheological, textural and retrogradation properties of the starches. Corn starch showed a lower degree of acetylation than potato starches under similar experimental conditions. The degree of acetylation for different potato starches also differed significantly. Morphological examination revealed that the granules of acetylated Kufri Chandermukhi and Kufri Sindhuri starches tended to appear as fused and less smooth than native starch granules. Acetylation of corn and potato starches decreased the transition temperatures and enthalpy of gelatinization and increased swelling power and light transmittance. However, the change in these was greater in the potato starches with higher percentage of small sized granules. Acetylated starches showed higher peak G', G'' and lower tan δ than their counterpart native starches during heating. Among the starches from different cultivars, the change in the rheological parameters after acetylation differed to a significant extent. The retrogradation was observed to be negligible in the acetylated cooked starch pastes. Results implied that the change in functional properties of starches with acetylation depends on source and granule morphology of native starch.  相似文献   

3.
Starch extracted from Indian water chestnut was investigated for its physicochemical characteristics. The results were compared with those obtained from two commercial starches (corn and potato). The pasting properties were tested in the Rapid Visco Analyser and thermal properties with a differential scanning calorimeter. Water chestnut starch possessed higher breakdown viscosity (BV) and setback viscosity (SV) than corn and potato starches. However, the pasting temperature of water chestnut starch was not significantly different from that of corn starch. Lower ΔHgel values were obtained for water chestnut starch than for the other two starches whereas the onset, peak and conclusion temperatures of gelatinization (To, Tp and Tc) for water chestnut starch were quite comparable with corn starch. Scanning electron micrographs showed similarity in starch granule shape between water chestnut and potato starch with corn starch showing surface wrinkles on starch granule surfaces.  相似文献   

4.
Starches from potato (Mainechip, ND651-9 and Commercial) and Navy and Pinto bean were isolated and the pasting and thermal properties examined. Analysis by Rapid Visco-Analyzer (RVA) showed potato starches had lower pasting temperatures, higher peak viscosity, and lower setback than bean starches. High intrinsic viscosity values obtained for the potato starch indicated higher average molecular weight for the potato starches compared to the bean starches. Characterization of thermal (gelatinization and retrogradation) properties of starches by Differential Scanning Calorimetry (DSC) showed that potato starches had sharp, well-defined gelatinization thermograms, while bean starches had broad, shallow thermograms with higher peak temperature (Tp). Potato starches required higher gelatinization enthalpies than bean starches. In comparison with gelatinization, the retrogradation thermograms of starches stored at three different temperatures (23,4 and −10°C) were broader and occurred at the lower temperatures. Compared to potato starches, Navy and pinto bean starches showed a higher retrogradation enthalpy at 4 and 23°C storage temperatures, but a lower enthalpy at −10°C.  相似文献   

5.
Native potato, waxy corn, corn, wheat, filed pea and lentil starches were autoclaved at 15 psi, 121°C for 1min. Scanning electron micrographs of the native and autoclaved starches showed no changes in granular surfaces and shapes. In all starches, the X-ray intensities at most of the d-spacings between 3-18 Å increased upon autoclaving, being more pronounced in potato. The X-ray patterns of cereals and legumes remained unchanged, while that of tuber (potato) became more cereal-like. Differential scanning calorimetry of the starch samples revealed that autoclaving increased the gelatinization transition temperatures of wheat but decreased that of potato; the changes observed in waxy corn, corn, field pea and lentil starches were very small. The gelatinization enthalpy of all native starches decreased upon autoclaving while the percentage decrease was highly marked in potato. Image analysis of the native and autoclaved starches revealed changes in the granule size distribution patterns. Also, the population mean area of all native starch granules considerably increased upon autoclaving. Acetyl binding capacity, measured at 5% and 10% acetic anhydride addition levels, was higher in autoclaved than in native starches. Furthermore, autoclaving had no influence on starch cationization, studied at 3% and 6% reagent addition levels. The results indicated that the changes in starch molecular organization caused by autoclaving enhanced its reactivity towards acetylation but not cationization.  相似文献   

6.
This study investigates the effects of water-soluble mucilages (0, 2.5, and 5 g/100 g; w/w, dry basis) on the thermal and pasting properties of isolated starches from three root and tuber crops. The results show that yam tuber presents the greatest level of mucilage and also possess the largest amylose content of the three isolated starches. The addition of mucilage caused a remarkable increase in the temperature of gelatinization for the three tested starches due to the competition for water during starch gelatinization. Furthermore, adding mucilage increased the phase transition temperature range (Tc-To) of starches but decreased enthalpy (ΔH). However, although the pasting temperature increased with the addition of mucilage into tuber starches, it did not change that of taro starch. The peak viscosity of taro and sweet potato starches decreased significantly as their mucilages were added into each starch suspension system (p < 0.05). However, the addition of mucilage slightly increased the viscosity of yam starch. Furthermore, the addition of mucilage slightly increased the swelling power of yam and taro starches, but did not change that of sweet potato starch.  相似文献   

7.
In this study, the morphological and physicochemical of pigmented maizes as well as the initial characterization of the corresponding starch granule enzymes are described. Starch granules were isolated from blue, black, and white maize. They were analyzed using scanning electron microscopy, particle size distribution, pasting characteristics, sorption isotherms, differential scanning calorimetry, and two‐dimensional gel electrophoresis. The morphology of the starch granules of pigmented maizes was different from the granules of white maize; the pattern was related to the endosperm type of these varieties. The average starch granule size was higher for black than for white and blue maizes. The average gelatinization temperature was similar in the three starches, but the pigmented maizes had higher gelatinization enthalpy; black maize starch showed the lowest enthalpy of retrogradation. These results indicated that the starches from the three maizes analyzed had different organization level. Black maize starch showed the highest peak viscosity followed by white and blue maize starches. In the gel electrophoresis three starch granules presented one main spot at pI of 5 and MW of 60 kDa that corresponds to the granule‐bound starch synthase. Blue and white starches presented some spots near 97 kDa at pI of 5.3–5.7 (white maize) and 5.1–5.5 (blue maize), spots that were not observed for black maize starch. The morphological and physicochemical characteristics of maize starch are related to the enzymes involved in its biosynthesis.  相似文献   

8.
Selected physicochemical, thermal, and rheological properties of starches isolated from new Polish potato varieties were determined. The starches contained 25.7–30.0 g/100 g d.m. of amylose and 59.5–90.2 mg/100 g d.m. of phosphorus. Gelatinization temperatures were 62.6–64.0, 68.9–69.9, and 73.6–77.0°C for TO, TP, and TE, respectively, whilst enthalpy of gelatinization amounted to 11.1–15.3 J/g. The retrogradation degree of starch was from 52.90 to 78.53%. Pasting curves showed significant differences between the starches. Peak viscosity and final viscosity ranges were 2035–4458 and 1931–2985 mPa · s, respectively. Starch pastes exhibited non‐Newtonian, shear thinning, and thixotropic behavior. After cooling they demonstrated diversified viscoelastic properties, however, all of them were classified as weak gels. Significant linear correlations among selected rheological parameters and amylose and phosphorus content were found. Results of principal component analysis demonstrated an ability to differentiate the starches isolated from different potato varieties.  相似文献   

9.
Starch was extracted from twenty‐four accessions of Group Phureja cultivated diploid potatoes, and from two commercial potato (Solanum tuberosum) varieties. Extracted starch samples were characterized and compared to industrial potato starch. Starch from Phureja generally exhibited smaller granule sizes and lower phosphorus content than starch from commercial potatoes. Amylose content and thermal properties (gelatinization temperature and enthalpy) were however in the same range for both groups. Starches from Phureja displayed very distinct pasting behavior from that of commercial potato. The former exhibited lower initial pasting viscosity but higher shear resistance. This may be related to lower starch granule size, causing lower swelling power and solubility. Iodine complexation results seem to indicate that phureja potatoes have higher proportion of amylopectin long chains. Phureja thus appears to be a promising new source of starch with specific physico‐chemical and functional properties intermediate between industrial potato and cereal starches.  相似文献   

10.
《Food chemistry》2002,79(2):183-192
The physico-chemical, morphological, thermal and rheological properties of the starches separated from different potato cultivars (Kufri Jyoti, Kufri Badshah and Pukhraj) were studied. The starches separated from the mealier cultivars (Kufri Jyoti and Kufri Badshah) showed lower transition temperatures (To; Tp and Tc), peak height indices (PHI), and higher gelatinization temperature range (R) and enthalpies of gelatinization (ΔHgel) than the starch from the least mealy cultivar (Pukhraj). Swelling power, solubility, amylose content and transmittance values were observed to be higher for Kufri Jyoti and Kufri Badshah potato starches, while turbidity values were lower for these starches. The rheological properties of starches, measured using a dynamic rheometer, showed significant variation in the peak G, G″ and peak tan δ values. Kufri Badshah and Kufri Jyoti starches showed higher peak G′, G″ and lower peak tan δ values than Pukhraj starch during heating and cooling cycles. Kufri Jyoti and Kufri Badshah starches showed higher breakdown in G′ than starch from the Pukhraj potato cultivar. The large-sized granules of the starches from Kufri Badshah and Kufri Jyoti appeared to be associated with higher values of peak G′ and G″ and consistency coefficient. Starch from the least mealy cultivar (Pukhraj) showed higher retrogradation, which increased progressively during storage at 4 °C for 120 h.  相似文献   

11.
Native starch was isolated from ginkgo kernels, its physicochemical properties were investigated using some physical methods. Ginkgo starch granules were mostly oval in shape with a central Maltese cross and average long axis of 11 μm. Ginkgo starch contained 29.9% amylose content and exhibited an A-type crystallinity with 27.2% crystalline degree. Ginkgo starch had significantly higher gelatinization conclusion temperature, temperature range, and enthalpy than potato and rice starches. Ginkgo starch showed lower hot viscosity and higher breakdown viscosity than potato and rice starches. Ginkgo starch possessed markedly higher swelling power and resistance to α-amylase and amyloglucosidase hydrolysis than rice starch.  相似文献   

12.
High amylose corn starch (HACS) and potato starch were hydrolyzed by pancreatic α‐amylase in vitro. Residues after hydrolysis were collected and characterized for their physicochemical properties and molecular structure. Compared with raw starches, residues had lower apparent amylose contents and higher resistant starch contents. The gelatinization enthalpy of residues from HACS increased while enthalpy of residues from potato starch decreased from 15.4 to 11.3 J/g. Peak viscosity and breakdown values of the residues from potato starch were markedly decreased but final viscosity values did not show much change. Chain length distribution of debranched amylopectin from the residues indicated that the relative portion of short chain in the residue decreased for both starches. More molecules with intermediate chain length (DP 16—31) were found in residue after 48‐h hydrolysis of potato starch.  相似文献   

13.
Starches from normal rice (21.72% amylose), waxy rice (1.64% amylose), normal corn (25.19% amylose), waxy corn (2.06% amylose), normal potato (28.97% amylose) and waxy potato (3.92% amylose) were heat-treated at 100 °C for 16 h at a moisture content of 25%. The effect of heat-moisture treatment (HMT) on morphology, structure, and physicochemical properties of those starches was investigated. The HMT did not change the size, shape, and surface characteristics of corn and potato starch granules, while surface change/partial gelatinization was found on the granules of rice starches. The X-ray diffraction pattern of normal and waxy potato starches was shifted from B- to C-type by HMT. The crystallinity of the starch samples, except waxy potato starch decreased on HMT. The viscosity profiles changed significantly with HMT. The treated starches, except the waxy potato starch, had higher pasting temperature and lower viscosity. The differences in viscosity values before and after HMT were more pronounced in normal starches than in waxy starches, whereas changes in the pasting temperature showed the reverse (waxy > normal). Shifts of the gelatinization temperature to higher values and gelatinization enthalpy to lower values as well as biphasic endotherms were found in treated starches. HMT increased enzyme digestibility of treated starches (except waxy corn starch); i.e., rapidly and slowly digestible starches increased, but resistant starch decreased. Although there was no absolute consistency on the data obtained from the three pairs of waxy and normal starches, in most cases the effects of HMT on normal starches were more pronounced than the corresponding waxy starches.  相似文献   

14.
A new sweet potato breeding line, Kanto 116, was developed, featuring low gelatinization temperature and an altered starch fine structure. Starch granules from Kanto 116 showed an abnormal morphology characterized by cracking into granules. Starch content, amylose content and tuberous root appearance of Kanto 116 were similar to those of the control and the parents. Pasting temperatures of Kanto 116 starch determined by the Rapid Visco Analyser were 51.4 — 52.6 °C, approximately 20 °C lower than those of the control and parents starches. Onset, peak, and conclusion temperature of gelatinization, and gelatinization enthalpy of Kanto 116 starch determined by differential scanning calorimetry were 39.0 °C, 46.9 °C, 64.8 °C, and 8.8 J/g, respectively, and much lower than those of the control and parents starches. The chain‐length distribution of the amylopectin molecules, determined by high‐performance anion‐exchange chromatography, showed that Kanto 116 starch had a higher proportion of short chains (DP 6 — 11) and a lower proportion of chains between DP 12 — 28 than control and parent starches. The debranched β‐limit dextrin of Kanto 116 starch also showed that the proportion of both short and long B1 chains was different from those of the control and parents starches.  相似文献   

15.
Starch isolated from fern rhizome was studied for physicochemical and functional properties. The recrystallization method was used for separation and purification of AM and AP from the starches. The fern rhizome starch contained 25.38 ± 0.40% AM. XRD studies showed that fern rhizome starch exhibited a C‐type diffraction pattern. SEM showed that granule shape was oval mostly, and the size ranged from 7 to 28 µm. The gelatinization temperature was from 58.94 ± 0.11°C to 71.73 ± 0.22°C, and the melting enthalpy was 12.86 ± 0.53 J/g. According to the viscosity measurement with Brabender viscograph, fern rhizome starch presented higher peak viscosity, which showed that it had more swelling power. Compared with corn and potato starches, fern rhizome starch had a lower transparency. The RS in the fern rhizome starch vermicelli prepared with extrusion method was around 10.49 ± 0.46%.  相似文献   

16.
The physicochemical properties of wx potato, wx corn, and wx rice starches were examined and compared. wx potato starch displayed the B‐type XRD pattern, whereas wx rice and wx corn displayed the A‐type. Shapes of wx potato starch were oval or slightly round, wx corn and wx rice starch granules were polygonal. AM contents of the three starches were between 1.0 and 1.5%. Rapid viscosity analyzer data showed initial pasting temperatures of wx potato, wx corn, and wx rice starches as 69.6, 75.4, and 76.8°C, respectively, peak viscosity, breakdown, and setback of wx potato starch were 2114, 1084, and 4 mPa s. Using DSC, onset temperature of gelatinization of wx potato starch was 5.5–7.2°C higher than those of wx rice and wx corn starches. The thermal enthalpies of the starches studied in our laboratory were in the range of 0.2268–1.9900 J/g with decreasing order of wx potato > wx corn > wx rice starch.  相似文献   

17.
Fresh tubers from four traditional Taewa (Maori potato) cultivars (Karuparera, Tutaekuri, Huakaroro and Moemoe) and one modern potato cultivar (Nadine) of New Zealand, were stored at 4 °C and 80–90% relative humidity for six months after harvest. Starch was isolated from tubers after every three month period, and its physico-chemical and functional properties measured. Considerable changes in these properties occurred during storage. The extent of changes varied significantly from cultivar to cultivar. Starch swelling power, solubility and light transmittance decreased during tuber storage while a slight increase was observed in starch amylose content. The starch granule size distribution shifted to smaller granule size during tuber storage. Scanning electron micrographs showed degradation/erosion and pitting on the surfaces of many of the starch granules isolated from stored tubers. Transition temperatures and enthalpies of gelatinization of the starches increased somewhat during tuber storage, suggesting that changes in the stability of starch crystalline structures had occurred. Pasting, viscoelastic and texture profile analysis (TPA) characteristics of starch gels were found to have been influenced by tuber storage time for all the cultivars, but to the greatest extent for Nadine and Huakaroro. Gels made from starches from the stored tubers had a reduced tendency towards retrogradation as evidenced by the decrease in syneresis (%) during gel storage at 4 °C.  相似文献   

18.
The effects of annealing on the digestibility, morphology, and physicochemical characteristics of four types of granular sweet potato starches [Yulmi (YM), Yeonwhangmi (YHM), sweet potato starch from Samyang Genex (SSPS), and commercial sweet potato starch (CSPS)] were investigated. Annealing was performed at 55°C and 90% moisture content for 72 h. Morphology, the branched chain distribution of amylopectin, and the X-ray diffraction pattern remained unchanged during the annealing process. The slowly digestible starch content in annealed YM, YHM, and SSPS starches increased, but did not change in annealed CSPS. The gelatinization temperatures increased, but the gelatinization temperature range decreased with annealing. The swelling factor and amylose leaching decreased, while the close packing concentration increased. Rapid Visco Analyser analysis revealed that annealed starches possessed thermal stability and higher pasting temperatures. It is suggested that the enhanced packing arrangement formed during annealing impacts the digestibility and physicochemical properties of sweet potato starches.  相似文献   

19.
Starch granule development and physicochemical properties of starches in waxy wheat and non-waxy wheat were investigated in this article. Starch granules in waxy wheat endosperm showed an early developmental process. Compared with non-waxy wheat starch granules (round-shaped), waxy wheat starch granules (ellipse-shaped) were larger and contained more B-type granules. According to the granule size, starch granules were divided into two groups in waxy wheat, but were divided into three groups in non-waxy wheat. Compared with non-waxy wheat starch, waxy wheat starch had higher swelling power, gelatinization temperatures (To, Tp, Tc), and relative degree of crystallinity. They showed similar ordered structures on external regions of starch granules. Additionally, waxy wheat starch had a higher proportion of double-helical components and a lower proportion of single-helical components than non-waxy wheat starch. Based on the previous results, it was concluded: (1) waxy wheat and non-waxy wheat not only differed in starch granule development, but also in physicochemical properties of starches; (2) waxy wheat had more potential value for producing traditional products than non-waxy wheat.  相似文献   

20.
Several commercial starch noodles made from legume, tuber, geshu (kudzu and sweet potato) and fernery starches were used to study the characteristics of starch in starch noodles and their effect on eating quality of starch noodles. Scanning electron microscopy observation found that the special inner structure of starch noodles was composed of some broken starch granules and some gel-like substances. Tuber and legume starches had the highest and lowest solubility, swelling power, swelling factor, setback, breakdown, peak viscosity, and final viscosity, respectively. Legume and tuber starches had the highest and lowest gelatinization temperature, respectively. Tuber and geshu starches had the highest amylose leaching rate, while legume starches owned the lowest value (p < 0.05). Tuber starches had the highest conclusion temperature of gelatinization (151.12~158.86°C). Fernery starches had the lowest value of retrogradation enthalpy (967.33 J/g dry starch). Legume starch noodles had the lowest broken rate (0.00~1.67%), swelling ratio (332.64~343.57%), and cooking loss (2.40~2.74%), and the highest hardness (87.47~93.29 g/mm2), shear deformation (0.49~0.52), and elasticity (0.58~0.62), However, tuber and fernery starch noodles did the opposite, tuber and legume starch noodles had the highest and lowest cohesiveness, respectively. All the above cooking and starch properties test results of starch noodles demonstrated that, compared with others, legume starch noodles are relatively well in eating quality. The correlation analysis showed that the cooking and physical quality of starch noodles could be perfected significantly by improving the swelling and pasting properties for starch of starch noodles, while thermal properties had no obvious influence on them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号