首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study the morphology and properties of a biodegradable aliphatic–aromatic copolyester mixed with kenaf fiber were investigated. Untreated kenaf fiber, as well as kenaf fiber treated with NaOH, and with NaOH followed by silane coupling agent treatment at various concentrations, were used as fillers in the composites. The biocomposites were prepared by melt‐mixing and a 10 wt% fiber loading was used for all the composites. The properties of the biocomposites were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), tensile properties, environmental scanning electron microscopy (ESEM), and biodegradability. The extent of silane initiated grafting was followed by gel content determination. The presence of fiber and fiber treatment influenced the determined properties in a variety of ways, but the best balance of properties were found for the copolyester mixed with alkali‐treated fiber. This composite showed improved thermal, thermomechanical, and mechanical properties. The introduction of alkali treatment caused increased surface roughness in the fiber, which resulted in mechanical interlocking between the filler and the matrix, while silane treatment slightly reduced the properties. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

2.
Kudzu fiber‐reinforced polypropylene composites were prepared, and their mechanical and thermal properties were determined. To enhance the adhesion between the kudzu fiber and the polypropylene matrix, maleic anhydride‐grafted polypropylene (MAPP) was used as a compatibilizer. A continuous improvement in both tensile modulus and tensile strength was observed up to a MAPP concentration of 35 wt %. Increases of 24 and 54% were obtained for tensile modulus and tensile strength, respectively. Scanning electron microscopy (SEM) showed improved dispersion and adhesion with MAPP. Fourier transform infrared (FTIR) spectroscopy showed an increase in hydrogen bonding with an increase in MAPP content. Differential scanning calorimetry (DSC) analysis indicated little change in the melting temperature of the composites with changes in MAPP content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1961–1969, 2002  相似文献   

3.
Three‐dimensional (3D) shell‐structured PLA/Flax biocomposites were fabricated using a novel method incorporating the 3D nonwoven web‐forming process. PLA and flax fibers were blended in the fiber opening stage and converted to webs on the 3D mold using the air‐laying principle. The 3D webs were then consolidated by through‐air thermal bonding. The compression molding technique was used finally to convert the 3D webs to the biocomposites. The relationship between the main process parameters and the properties of the biocomposites was investigated. The results show that with increasing flax fiber content, the crush failure load, total energy absorption, specific energy absorption, and crush efficiency increased. The crushing properties decreased with increased molding temperature, but the crushing properties are not significantly affected by the molding time. The physical properties of 3D biocomposites were also evaluated and the appropriate processing parameters for 3D biocomposites were established. POLYM. COMPOS., 35:1244–1252, 2014. © 2013 Society of Plastics Engineers  相似文献   

4.
Adhesive bonding is known to be particularly suitable for thermoset composites with continuous fiber reinforcement as it does not interrupt the fibers because of drilled holes. The frequently used two‐part adhesives often require long curing times for the chemical reaction. At the Institute of Polymer Technology (LKT), a vibration‐assisted hot melt bonding technique (vibration joining) was developed, which offers short cycle times and represents a modification of hot melt bonding, using the machine technology from vibration welding. It is suitable to join thermoplastics with thermoset materials or thermosets using a thermoplastic interlayer, by taking advantage of short cycle time and good lap shear strength, compared to bonding with reactive adhesives. Polym Compos 2009 POLYM. COMPOS., 31:1205–1212, 2010. © 2009 Society of Plastics Engineers  相似文献   

5.
The usage of wood‐plastic composites (WPCs) is rapidly growing because of their many advantages. However, they still suffer from lack of strength and toughness, which can be improved by adding a small amount of glass fiber reinforcement (GFR). Tensile tests of high‐density polyethylene WPC specimens with varying amounts of wood fiber content and 5% of GFR were carried out. Significant improvements in properties were observed. J. VINYL ADDIT. TECHNOL., 2008. © 2008 Society of Plastics Engineers.  相似文献   

6.
Wood is one of the main materials used for making musical instruments due to its outstanding acoustical properties. Despite such unique properties, its inferior mechanical properties, moisture sensitivity, and time‐ and cost‐consuming procedure for making instruments in comparison with other materials (e.g., composites) are always considered as its disadvantages in making musical instruments. In this study, the acoustic parameters of three different polyester composites separately reinforced by carbon fiber, glass fiber, and hemp fiber are investigated and are also compared with those obtained for three different types of wood specimens called poplar, walnut, and beech wood, which have been extensively used in making Iranian traditional musical instruments. The acoustical properties such as acoustic coefficient, sound quality factor, and acoustic conversion factor were examined using some non‐destructive tests based on longitudinal and flexural free vibration and also forced vibration methods. Furthermore, the water absorption of these polymeric composites was compared with that of the wood samples. The results reveal that the glass fiber‐reinforced composites could be used as a suitable alternative for some types of wood in musical applications while the carbon fiber‐reinforced composites are high performance materials to be substituted with wood in making musical instruments showing exceptional acoustical properties. POLYM. COMPOS., 35:2103–2111, 2014. © 2014 Society of Plastics Engineers  相似文献   

7.
This paper deals with prediction of the temperature rise in the stress‐controlled fatigue process of a glass‐fiber‐reinforced polyamide and the application of a temperature and frequency superposition procedure to the S‐N curve. An experimental equation was derived to predict the temperature rise from calculations based on the fatigue test conditions and viscoelastic properties of the material. The temperature rise (ΔT) can be expressed as a product of a coefficient term Φ(L, κ) concerning heat radiation and the test‐specimen shape and a function term Pfat concerning the viscoelastic properties and fatigue test conditions. Φ(L, κ) was found experimentally to derive the equation for predicting the temperature rise blow or above the glass transition temperature (Tg) of the material. The equation σR = −STf A log NfR + STf B was obtained as a procedure for applying temperature and frequency superposition to S‐N curves in consideration of ΔT. This procedure was obtained by combining both temperature‐ and frequency‐superposition techniques. Here, σR and log NfR represents the stress and the fatigue lifetime calculated at a given temperature and frequency, A and B denote the slope and intercept of any arbitrarily chosen S‐N curve, and STf is a shift factor for temperature and frequency superposition. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1783–1793, 1999  相似文献   

8.
The barrier properties of short‐fiber‐reinforced epoxy foam are characterized and compared with unreinforced epoxy foam in terms of moisture absorption, flammability properties, and impact properties. Compression and shear properties are also included to place in perspective the mechanical behavior of these materials. Compared with conventional epoxy foam, foam reinforced with aramid fibers exhibits higher moisture absorption and lower diffusion, while glass‐fiber‐reinforced foam is significantly stiffer and stronger. In addition, the polymeric foam composites studied present superior fire‐resistance compared with conventional epoxy foam systems. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3266–3272, 2006  相似文献   

9.
The utilization of disposable chopsticks is very popular in Taiwan, China, and Japan and is one of the major sources of waste in these countries. In this study, recycled disposable chopstick fiber was chemically modified. Subsequently, this modified fiber and polypropylene‐graft‐maleic anhydride were added to polypropylene (PP) to form novel fiber‐reinforced green composites. A heat‐deflection temperature (HDT) test showed an increase of approximately 81% for PP with the addition of 60‐phr fibers, and the HDT of the composite could reach up to 144.8°C. In addition, the tensile strength, Young's modulus, and impact strength were 66, 160.3, and 97.1%, respectively, when the composite material was 40‐phr fibers. Furthermore, this type of reinforced PP would be more environmentally friendly than an artificial‐additive‐reinforced one. It could also effectively reduce and reuse the waste of disposable chopsticks and lower the costs of the materials. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
《Polymer Composites》2017,38(10):2166-2173
Polylactic acid (PLA) has a long history in medical applications. Reinforced PLA has the potential to be used in the medical applications that require high mechanical strength such as coronary stents and bone fixation devices. Halloysite nanotube (HNT) has received considerable attention recently due to its tubular structure, high aspect ratio, high mechanical strength, thermal stability, biocompatibility and sustained drug releasing properties. Halloysite has been investigated in compounding with many polymers. However, the research in compounding halloysite with biodegradable materials for use in biological applications is sparse. In this study various weight fractions of HNT was compounded with the biodegradable polymer PLA using a melt compounding method. Tensile test, Fourier infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), contact angle test, scanning electron microscopy (SEM), void content and thermogravimetric analysis (TGA) were carried out to study the PLA/HNT composite. Tensile test results indicated that Young's modulus and stiffness of PLA were enhanced with the addition of HNT; FTIR spectra showed the interaction between the PLA and HNT; whereas contact angle measurements indicated that the wettability of the PLA/HNT composite was not affected by the addition of HNT. However, the thermal stability of PLA was adversely effected by the addition of HNT which may be related to the presence of voids between the polymer and matrix. Nevertheless, the reinforced PLA/HNT composite, which maintains the surface characteristics, may prove beneficial for use in biological applications. POLYM. COMPOS., 38:2166–2173, 2017. © 2015 Society of Plastics Engineers  相似文献   

11.
Whereas lignocellulosic fibers have received considerable attention as a reinforcing agent in thermoplastic composites, their applicability to reactive polymer systems remains of considerable interest. The hydroxyl‐rich nature of natural lignocellulosic fibers suggests that they are particularly useful in thermosetting systems such as polyurethanes. To further this concept, urethane composites were prepared using both unused thermomechanical pulp and recycled newsprint fibers. In formulating the materials, the fibers were considered as a pseudo‐reactant, contributing to the network formation. A di‐functional and tri‐functional poly(propylene oxide)‐based polyol were investigated as the synthetic components with a polyol‐miscible isocyanate resin serving as a crosslinking agent. The mechanical properties of the composites were found to depend most strongly on the type of fiber, and specifically the accessibility of hydroxy functionality on the fiber. Dynamic mechanical analysis, swelling behavior, and scanning electron micrographs of failure surfaces all provided evidence of a substantial interphase in the composites that directly impacted performance properties. The functionality of the synthetic polyol further distinguished the behavior of the composite materials. Tri‐functional polyols generally increased strength and stiffness, regardless of fiber type. The data suggest that synthetic polyol functionality and relative accessibility of the internal polymer structure of the fiber wall are dominant factors in determining the extent of interphase development. Considerable opportunity exists to engineer the properties of this material system given the wide range of natural fibers and synthetic polyols available for formulation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 546–555, 2001  相似文献   

12.
The creep properties, that is, the velocity constant, activation energy, stress index, and time index, of a test piece (TP) cut from a glass‐fiber‐reinforced nylon 6 product were successfully determined by a compression creep test. In the determination of the creep properties, the experimental creep curves for the TP were fitted by finite element analysis (FEA). Fiber‐reinforced nylon 6 beams with different fiber orientations were also prepared, and their creep properties were successfully determined by a combination of the bending creep test and the corresponding analysis. The creep behavior of the press‐fit component composed of a metal collar and a fiber‐reinforced nylon 6 product was predicted by FEA with the determined creep properties of the TP. The predicted retention forces were in good agreement with the experimental ones. The effects of the fiber orientation on the long‐term reliability of the press‐fit component are also discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
We explored the environmental aging behavior of banana‐fiber‐reinforced phenol formaldehyde (PF) composites. The composites were subjected to water aging, thermal aging, soil burial, and outdoor weathering. The effects of chemical modification and hybridization with glass fibers on the degradability of the composites in different environments were analyzed. The extent of degradation was measured by changes in the weight and tensile properties after aging. Absorbed water increased the weight of water‐aged composites, and chemical treatments and hybridization decreased water absorption. The tensile strength and modulus of the banana/PF composites were increased by water aging, whereas the strength and modulus of the glass/PF composites were decreased by water aging. As the glass‐fiber loading was increased in the hybrid composites, the increase in strength by water aging was reduced, and at higher glass‐fiber loadings, a decrease in strength was observed. The tensile properties of the composites were increased by oven aging. The percentage weight loss was higher for soil‐aged samples than for samples weathered outdoors. The weight loss and tensile strength of the glass/PF composites and banana/glass/hybrid/PF composites were much lower than those of the banana/PF composites. Silane treatment, NaOH treatment, and acetylation improved the resistance of the banana/PF composites on outdoor exposure and soil burial. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2521–2531, 2006  相似文献   

14.
In this study, we aimed to prepare and characterize glass fiber‐reinforced composites (GFRP) based on benzoxazine resins. Therefore, the molten resin from benzoxazine and bisoxazoline with the latent curing agent was used as the matrix resin, and the properties of GFRP based on the molten resins were investigated. The properties of GFRP were estimated by mechanical properties, heat resistance, and flame resistance. As a result, it was found that GFRP based on the molten resins from benzoxazine and bisoxazoline with the latent curing agent showed good heat resistance, flame resistance, and mechanical properties compared with those of the conventional GFRP. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
A rate‐dependent constitutive model for carbon fiber‐reinforced polymers was developed by assuming that the rate‐dependent characteristics of the composite could be described by stress relaxation of the polymer matrix. Relaxation functions in longitudinal, transverse, and in‐plane shear modes were derived in terms of separate matrix and fiber properties and the rules of mixture. The epoxy was represented as two Maxwell elements in parallel with a linear elastic spring, while the carbon was modeled as a linear elastic spring. The rate‐dependent, laminate stiffness matrix for a unidirectional IM6G/3501–6 carbon/epoxy laminate was found by fitting the rate‐dependent constitutive equations to material test data at constant strain rates ranging from 0.01 to 2,500 s−1. The transient deformation response of a [(08/908)2/0 8]s IM6G/3501–6 carbon/epoxy composite laminate under dynamic in‐plane loading could be predicted within 5% of experimental data using this laminate stiffness matrix. The rate‐dependent constitutive equations were also incorporated into LS‐DYNA3D via a user‐defined material subroutine and used to predict the transient response of a 32 ply AS4/3501–6 carbon/epoxy laminate under projectile loading. The maximum contact force between the projectile and laminate was found to be 7% higher than the experimental data. POLYM. COMPOS. 27:513–528, 2006. © 2006 Society of Plastics Engineers.  相似文献   

16.
Fiber‐reinforced polymer composites offer superior performance particularly in harsh environments; hence, they are recognized as an attractive material, especially for the transportation of pressurized fluids. However, an extensive use of these composites has been hampered, in part due to unsatisfactory solutions for the joining of subcomponents, and insufficient knowledge on the associated damage behavior. A favorable connection design for a piping system can be an adhesively bonded joint. In this study, a unique adhesive injection technique is presented that joins composite pipe sections using filament‐wound overlap sleeve couplers. The purpose of the present study was to characterize the performance and associated damage behavior of a prototype‐size pipe structure joined by the above procedure. Internal pressure and axial traction were applied to specimens at various biaxial ratios. In addition to the experimental investigation, the joint geometry was also modeled numerically employing the finite element technique. This yielded a better understanding of the damage behavior and enabled a parametric study that provided recommendations for an improved joint design. POLYM. COMPOS., 27:99–109, 2006. © 2005 Society of Plastics Engineers  相似文献   

17.
Fabrication of thermosetting‐matrix composites is based on a critical step of cure, which involves applying a predefined temperature cycle to a fiber‐resin mixture. Several temperature‐dependent mass transport processes occur in the vicinity of the reinforcement fiber, leading to the formation of an interphase region with different chemical and physical properties from the bulk resin. The cure cycles applied on the macroscopic boundaries of the composite govern the microscopic cure kinetics near the fiber surface, which in turn determines the interphase and composite properties. A predictive approach to directly linking the cure cycles and final composite properties is not presently available and is established for the first time in this paper. A multiscale thermochemical model is developed to predict the concentration profile evolution with time near fiber surfaces at various locations across the composite thickness. The concentration profiles at the gelation time are mapped to modulus profiles within the interphase region, and a finite element analysis is used to determine the overall composite modulus in terms of the constituent interphase, fiber, and matrix properties. Relevant numerical results are presented for the first time where the composite modulus is directly linked to the cure cycle and interphase formation parameters without assumed structures or properties of the interphase. The results provide useful information for selecting material components and cure cycles parameters to achieve desired interphase and composite properties. POLYM. COMPOS., 26:193–208, 2005. © 2005 Society of Plastics Engineers  相似文献   

18.
The mechanical recycling of high‐density polyethylene (HDPE) reinforced with wood fiber was studied by means of repeated injection moulding. The change in properties during the recycling was monitored by tensile and flexural tests, Charpy impact tests, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), FTIR spectroscopy, and by measuring the fiber lengths. Tests were also done where injection moulding was combined with subsequent accelerated thermo‐oxidative ageing and thereafter repeated numerous times. The results showed that the HDPE composites were relatively stable toward both the ageing conditions and the repeated injection moulding. The change of the mechanical properties was mainly observed as an increased elongation at max. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43877.  相似文献   

19.
A brief review of the potential for microwave heating in the manufacture of fiberreinforced composites is presented, with particular emphasis on the Microwave Assisted Pultrusion (MAP). Manufacture of a 6 mm cylindrical glass reinforced profile, based on a number of latent‐cure epoxy resins by MAP is described. These materials combine room temperature stability (long pot life) with rapid crosslinking at elevated temperature. The measured line speeds exceeded 2 m/min, using approximately 800 W of applied microwave power in a single mode TM010 cavity operating at 2450 MHz. The measured pulling force was about 250 N, showing a stick‐slip behavior for a crosslinked profile. The ultimate tensile strength and the interlaminar shear strength of the profiles increased after post curing, suggesting that the extent of crosslinking in the MAP die may be diffusion limited.  相似文献   

20.
The effect of carbon fiber (CF) and annealing temperature on polypropylene (PP) microstructure was studied. The crystalline state of polymer matrix was found to be a strong function of thermal history. The effect of annealing temperature on the microstructure evolution of PP in the presence of CFs was characterized by using X‐ray diffraction, DSC and localized thermal analysis. The melting behavior of CF‐reinforced PP composite was strongly dominated by the thermal history and was weakly influenced by the presence of CFs. The interface between a CF and PP matrix was found to be weak. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号