首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
This paper proposes a recurrent neural fuzzy controller (RNFC) approach based on a self‐organizing improved particle swarm optimization (SOIPSO) algorithm used for solving control problems. The proposed SOIPSO algorithm can adaptively determine the number of fuzzy rules and automatically adjust the parameters in an RNFC. The proposed learning algorithm consisted of phases of structure and parameter learning. Structure learning adopts several subswarms to constitute the adjustable variables in fuzzy systems, and an elite‐based structure strategy determines the suitable number of fuzzy rules. This paper proposes an improved particle swarm optimization technique, which consists of the modified evolutionary direction operator (MEDO) and traditional PSO techniques. The proposed MEDO method used the EDO and migration operation to improve the search ability of a global solution. Finally, the proposed RNFC approach based on the SOIPSO learning algorithm (RNFC–SOIPSO) was adopted to control a magnetic levitation system. Experimental results demonstrated that the proposed RNFC–SOIPSO model outperforms other models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
    
Magnetic levitation system with its advantages of no contact, no friction, and no abrasion can easily realize high‐precision and high‐speed positioning. This paper, first, introduces the structure of the magnetic levitation stage. Then its dynamic model with uncertainty and external disturbance is given, from which it can be seen that magnetic levitation system is highly nonlinear and strongly coupled. So, exact feedback linearization is applied to realize linearization and decoupling in the horizontal and vertical subsystems. Sliding mode controllers with variable switching gains, which are regulated according to fuzzy logic for the two subsystems, are designed. Particle swarm optimization with adaptive inertia weight regulation is used to find the optimum value of the quantification factor and scaling factor of the fuzzy logic system for both the horizontal and vertical direction. Simulation results show that this control method can achieve good dynamic performance with no overshoot and fast response and it can also offset the uncertainty and disturbance more effectively than controllers without the corresponding compensation. Moreover, the decreasing switching gains of the sliding mode controllers are presented, which contributes to reducing the chattering. © 2018 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

3.
针对高阶非线性系统的位置控制器PID参数优化问题,以五阶传递函数横动伺服系统为例,结合粒子群算法成功实现了参数的优化。设计了粒子群算法的PID参数优化原理。在已知系统传递函数的基础上,利用Z-N法进行参数初求解,然后利用粒子群算法对初解进行参数寻优,并将优化前后的系统进行动态性能对比,结果表明:优化后的高阶非线性系统动态性能更好,响应速度更快,调节时间更短,鲁棒性更强。  相似文献   

4.
利用平面磁悬浮实现精密加工用工作台的定位子系统,建立的平面磁悬浮系统数学模型具有非线性和结构不确定性,提出区间矩阵最小上界方法设计鲁棒控制器。仿真结果表明,使用该控制器的平面磁悬浮闭环系统具有鲁棒性强、响应速度快,且能有效地提高加工精度。  相似文献   

5.
讨论了一类由T-S模糊模型表示的不确定时滞非线性系统的模糊控制器设计问题。刻画了系统的不确定性,采用并行分布补偿的基本思想设计了状态反馈控制器,分析了现有T-S型模糊控制器设计方法计算复杂且难以求解的原因,在此基础上,提出了一种与系统实时输入相关的动态模型简化算法。同时,利用Lyapunov稳定性理论和线性矩阵不等式等有关工具,得出了该不确定时滞非线性系统的稳定条件,并给出了系统以衰减率α全局渐近稳定的充分条件,从而相应得出T-S型模糊状态反馈控制器。仿真实例表明,该设计方法的有效性。  相似文献   

6.
    
Highly intermittent power from renewable energy sources (RES) along with load and system perturbations in an autonomous microgrid (MG), results in large frequency fluctuations. Conventional controllers like PI controllers to be unable to provide acceptable performance over a wide range of operating conditions. To overcome this problem, present paper introduces a novel two-stage adaptive fuzzy logic based PI controller for frequency control of MG. In this proposed controller, particle swarm optimization (PSO) and grey wolf optimization (GWO) are used to optimize the membership functions (MFs) and rule base of fuzzy logic based PI controller. The proposed controller is examined on an MG test system, the robustness and performance of the proposed controller is tested in presence of different disturbance scenarios and parametric uncertainties. Finally, the superiority of the proposed controller is shown by comparing the results with various controllers available in literature like PSO tuned fuzzy logic based PI controller, fuzzy logic-based PI controller and also with the conventional PI controller.  相似文献   

7.
粒子群优化模糊PID的电动负载模拟器研究   总被引:1,自引:0,他引:1  
为了解决多余力矩对电动负载模拟器强干扰,影响加载指令跟踪精度的问题,将基于粒子群优化的模糊PID控制方法用于加载电机控制器的设计。首先在分析加载电机结构以及工作原理的基础上建立了电动加载系统的数学模型,并利用结构不变性原理进行前馈补偿推导;其次针对常规PID控制器无法通过变参数来应对复杂的非线性环境,以及模糊PID量化因子、比例因子难以依靠经验调整问题,提出了一种基于模糊PID和粒子群优化算法的复合控制策略;最后通过仿真验证了该控制策略在对多余力矩消除上要优于常规的模糊PID控制。  相似文献   

8.
基于改进微粒群算法的PID控制器参数优化设计   总被引:1,自引:0,他引:1  
介绍了微粒群优化(PSO)算法的基本原理和流程,提出了改进的PSO算法并将其与控制系统优化设计相结合,对传统PID控制器的参数整定进行优化研究,仿真实验结果表明改进PSO方法得到的PID控制器具有快速、无超调的响应特性,获得了满意的控制效果,各项控制性能指标优于传统方法整定得到的PID控制器。  相似文献   

9.
    
In this paper, the optimal tunning problem of parameters of a conventional lead–lag controller (LLC) and a fuzzy logic controller (FLC) based on the static Var compensator (SVC) is considered. The solution is obtained using an improved particle swarm optimization (IPSO) algorithm. The membership functions and scaling factors of the FLC and LLC parameters are optimized using the above‐mentioned technique. The proposed controllers are settled down to an SVC that is installed at the middle of a transmission line connecting a single machine to an infinite bus system. Simulation results show the superiority of the optimized FLC compared to the optimized LLC and also when the SVC is without the supplementary controller under different disturbances and loading conditions. The simulations and analyses are implemented in MATLAB environment. © 2013 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

10.
基于粒子群优化模糊控制器永磁同步电机控制   总被引:21,自引:0,他引:21  
电动汽车由于没有噪声,没有废气污染而受到城市居民的欢迎。而永磁同步电机在交流电机中具有很高的转动惯量,从而在电动汽车中广泛应用。该文提出了一种新的永磁同步电机控制策略,即利用粒子群算法对模糊控制器的3个比例因子参数ka、kb、ku进行全局优化,充分发挥模糊控制器的鲁棒性。为了验证该方法的有效性,利用Matlab仿真工具进行仿真验证,观察控制系统的一阶动态响应。结果表明,系统具有很强的鲁棒性,能够很好的跟踪负载变化,动态响应快,速度跟随准确;利用DSPF240仿真器搭建实验电路,并将整个优化过程分为3个阶段,减少计算量,以提高运算速度,实验结果初步验证了粒子群优化方法在电动汽车领域应用的可行性。  相似文献   

11.
自适应控制以其明显的优势,在实际中尤其是在模型不太精确或参数缓慢变化的系统中的应用越来越广泛.结合粒子群优化算法对系统进行在线辨识,根据辨识结果利用优化算法对控制器的参数进行调整,并以锅炉汽包作为被控对象进行了仿真研究.仿真结果表明,使用该方法,控制效果良好.  相似文献   

12.
This paper emphasizes the development of control strategy for inter-area oscillation suppression for a unified two-area hydro–thermal deregulated power system. A proportional derivative-type fuzzy logic controller with integral (PDFLC+I) controller was proposed for automatic generation control. Further comparisons among conventional integral controller, proportional integral derivative controller, and PDFLC+I are carried out, where the PDFLC+I controller is optimized by four different optimization techniques namely, algorithm, ant colony optimization, classical particle swarm optimization, and adaptive particle swarm optimization. In PDFLC+I controller optimization, scaling parameters of controllers are optimized. A comparative study shows that the proposed PDFLC+I controller has a better dynamic response following a step load change for the combination of PoolCo and bilateral contract-type transaction in deregulated environment. Proposed controller performance has also been examined for ±30% variation in system parameters. Non-linearity in the form of governor dead band is taken into account during simulation.  相似文献   

13.
锅炉-汽轮机系统的分数阶控制器设计   总被引:2,自引:1,他引:2  
将分数阶微积分用于系统控制已引起控制学界的广泛关注。分数阶PIλDμ.控制是传统PID控制的推广与发展,积分阶次λ和微分阶次μ的引入使得分数阶控制器具有更灵活的结构和更强的鲁棒性。分数阶PIλDμ控制器对对象参数变化不敏感,对非线性有很强的抑制能力。将分数阶控制器用于多变量非线性控制系统的设计,针对输入受限和不确定性的非线性MIMO锅炉-汽轮机系统设计分数阶PIλDμ控制器,控制器参数整定采用粒子群优化算法。仿真结果表明,获得的分数阶PIλDμ控制器在大范围负荷变化及存在参数、结构不确定性时均能取得满意的控制效果,显示良好的适应性及鲁棒性,与传统PID控制器相比具有明显优势。  相似文献   

14.
改进的PSO算法及其在PID控制器参数整定中的应用   总被引:5,自引:3,他引:5  
粒子群优化算法(PSO)是一种新兴的随机优化技术,在许多领域得到了广泛应用。为了提高算法的计算精度,加快算法的收敛速度,提出了一种改进的粒子群优化算法,通过引入粒子运动过程中的最差位置信息,由最优个体和最差个体获取信息,有效地提高了算法的搜索能力和收敛速度。在实验研究中,采用改进的粒子群优化算法对PID控制器参数进行整定并用于啤酒发酵过程温度段控制,实验结果表明所提出的算法搜索能力及收敛速度显著提高,应用该方法得到的PID控制器综合性能优于常规方法所得的结果。  相似文献   

15.
    
Concurrent learning (CL) is a recently developed adaptive update scheme that can be used to guarantee parameter convergence without requiring persistent excitation. However, this technique requires knowledge of state derivatives, which are usually not directly sensed and therefore must be estimated. A novel integral CL method is developed in this paper that removes the need to estimate state derivatives while maintaining parameter convergence properties. Data recorded online is exploited in the adaptive update law, and numerical integration is used to circumvent the need for state derivatives. The novel adaptive update law results in negative definite parameter error terms in the Lyapunov analysis, provided an online‐verifiable finite excitation condition is satisfied. A Monte Carlo simulation illustrates improved robustness to noise compared to the traditional derivative formulation. The result is also extended to Euler‐Lagrange systems, and simulations on a two‐link planar robot demonstrate the improved performance compared to gradient‐based adaptation laws.  相似文献   

16.
针对工业对永磁同步电机调速系统的更高调速精度、更快响应速度这些要求,该文提出了一种新的永磁同步电机控制策略,即利用粒子群算法对模糊PI控制器(Fuzzy PI)的2个参数因子kp、ki进行全局优化,充分发挥了粒子群算法的快速性。利用Matlab工具进行仿真验证,观察控制系统的一阶动态响应。结果表明,系统具有很强的鲁棒性,能够很好地跟踪负载变化,动态响应快,速度跟随准确。  相似文献   

17.
In this paper, chaotic ant swarm optimization (CASO) is utilized to tune the parameters of both single-input and dual-input power system stabilizers (PSSs). This algorithm explores the chaotic and self-organization behavior of ants in the foraging process. A novel concept, like craziness, is introduced in the CASO to achieve improved performance of the algorithm. While comparing CASO with either particle swarm optimization or genetic algorithm, it is revealed that CASO is more effective than the others in finding the optimal transient performance of a PSS and automatic voltage regulator equipped single-machine-infinite-bus system. Conventional PSS (CPSS) and the three dual-input IEEE PSSs (PSS2B, PSS3B, and PSS4B) are optimally tuned to obtain the optimal transient performances. It is revealed that the transient performance of dual-input PSS is better than single-input PSS. It is, further, explored that among dual-input PSSs, PSS3B offers superior transient performance. Takagi Sugeno fuzzy logic (SFL) based approach is adopted for on-line, off-nominal operating conditions. On real time measurements of system operating conditions, SFL adaptively and very fast yields on-line, off-nominal optimal stabilizer variables.  相似文献   

18.
针对采用干扰观察法时最大功率跟踪系统的输出功率在最大功率点附近小幅振荡的问题,设计了一种应用粒子群优化算法(particle swarm optimization,PSO)的模糊控制器,并将其应用于光伏发电系统的最大功率点跟踪(maximum power point tracking,MPPT)。该控制器采用粒子群算法优化模糊控制的隶属度函数,能够实时调整跟踪步长,保证系统在光照强度和温度变化时有较快的动态响应速度和较高的稳态精度。分别对采用干扰观察法、常规模糊控制方法和带粒子群优化的模糊控制器在相同情况进行了仿真和试验,结果证明了所提方法的有效性和鲁棒性。  相似文献   

19.
基于改进粒子群算法的电力系统有功调度   总被引:3,自引:0,他引:3  
秦明明  王坚  姜雷 《电力学报》2009,24(6):471-473,477
针对电力系统有功优化调度,提出了一种改进的粒子群算法,该算法考虑了火电厂的煤耗量,污染物排放量,以及线路损耗等,通过分别求解各个单目标优化问题和定义各单项目标的隶属度函数,把多目标优化问题转化为单目标优化问题,从整体上降低电力系统的发电成本。该算法以标准粒子群算法为基础,对其参数进行了改进,并对其搜索速度加以限制。将其应用于电力系统的3机组模型,算例仿真结果表明该算法节省了收敛时间,具有收敛速度快,计算精度高的优点。  相似文献   

20.
针对复杂工业过程中存在的一类模型不确定问题,提出了一种新的鲁棒比例积分微分(PID)控制器参数整定方法。通过对优化目标的分析,将鲁棒PID控制器的参数整定问题转化成一个求解最小-最大优化问题,并引入合作进化粒子群优化算法对该最小-最大优化问题进行求解。针对实例的仿真结果表明,利用该方法整定得到的鲁棒PID控制器具有良好的鲁棒性,提高了性能指标,当过程对象操作范围发生大的变化时,该控制器能获得满意的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号