首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitogen-activated protein kinase-activated protein kinase MK5 is a substrate of the mitogen-activated protein kinases p38, ERK3 and ERK4. Cell culture and animal studies have demonstrated that MK5 is involved in tumour suppression and promotion, embryogenesis, anxiety, cell motility and cell cycle regulation. In the present study, homology models of MK5 were used for molecular dynamics (MD) simulations of: (1) MK5 alone; (2) MK5 in complex with an inhibitor; and (3) MK5 in complex with the interaction partner p38α. The calculations showed that the inhibitor occupied the active site and disrupted the intramolecular network of amino acids. However, intramolecular interactions consistent with an inactive protein kinase fold were not formed. MD with p38α showed that not only the p38 docking region, but also amino acids in the activation segment, αH helix, P-loop, regulatory phosphorylation region and the C-terminal of MK5 may be involved in forming a very stable MK5-p38α complex, and that p38α binding decreases the residual fluctuation of the MK5 model. Electrostatic Potential Surface (EPS) calculations of MK5 and p38α showed that electrostatic interactions are important for recognition and binding.  相似文献   

2.
The Mad2 protein, with two distinct conformations of open- and closed-states, is a key player in the spindle checkpoint. The closed Mad2 state is more active than the open one. We carried out conventional and targeted molecular dynamics simulations for the two stable Mad2 states and their conformational transition to address the dynamical transition mechanism from the open to the closed state. The intermediate structure in the transition process shows exposure of the β6 strand and an increase of space around the binding sites of β6 strand due to the unfolding of the β7/8 sheet and movement of the β6/4/5 sheet close to the αC helix. Therefore, Mad2 binding to the Cdc20 protein in the spindle checkpoint is made possible. The interconversion between these two states might facilitate the functional activity of the Mad2 protein. Motion correlation analysis revealed the allosteric network between the β1 strand and β7/8 sheet via communication of the β5-αC loop and the β6/4/5 sheet in this transition process.  相似文献   

3.
This article illustrates by examples the limited acceptance by biologists of predictions made with molecular dynamics simulations of biomolecules. Its purpose is to increase the awareness of biologists of the contribution that simulations can make to our understanding of biomolecule function.  相似文献   

4.
5.
Methicillin-resistant Staphylococcus aureus (MRSA) tolerates β-lactam antibiotics by carrying out cell wall synthesis with the transpeptidase Penicillin-binding protein 2a (PBP2a), which cannot be inhibited by β-lactams. It has been proposed that PBP2a's active site is protected by two loops to reduce the probability of it binding with β-lactams. Previous crystallographic studies suggested that this protected active site opens for reaction once a native substrate binds at an allosteric domain of PBP2a. This opening was proposed for the new β-lactam ceftaroline's mechanism in successfully treating MRSA infections, i. e. by it binding to the allosteric site, thereby opening the active site to inhibition. In this work, we investigate the binding of ceftaroline at this proposed allosteric site using molecular dynamics simulations. Unstable binding was observed using the major force fields CHARMM36 and Amber ff14SB, and free energy calculations were unable to confirm a strong allosteric effect. Our study suggests that the allosteric effect induced by ceftaroline is weak at best.  相似文献   

6.
Microscopic structure and diffusion properties of benzene in ambient water (298 K, 0.1 MPa) and supercritical water (673--773 K, 25---35 MPa) are investigated by molecular dynamics simulation with site-site models.It is found that at the ambient condition, the water molecules surrounding a benzene molecule form a hydrogen bond network. The hydrogen bond interaction between supercritical water molecules decreases dramatically under supercritical conditions. The diffusion coefficients of both the solute molecule and solvent molecule at supercritical conditions increase by 30---180 times than those at the ambient condition. With the temperature approaching the critical temperature, the change of diffusion coefficient with pressure becomes pronounced.  相似文献   

7.
《分离科学与技术》2012,47(9):1285-1295
We report molecular dynamics studies of TBP behavior at the interface. TBP, irrespective of the number particles as well as of initial orientation, adsorbs at the interface to occupy the maximum surface of this area. Polar part of the molecule is pointed towards the aqueous phase an alkyl chains are pointed to the organic phase. Some of the TBP particles are present in the organic phase as well. TBP is able to bond 3 to 4 water particles in the organic phase. We can notice the formation of the following dimers: (TBP)2 · H2O, (TBP · H2O)2, as well as the formation of “water fingers”. ZnCl2(TBP)2 complex also adsorbs at the interface. Polar part P?O→ZnCl2←O?P is pointed towards water. Performed simulation show that the molecule of the complex is solvated by water particles as well. The obtained results correspond to the experimental ones.  相似文献   

8.
Jian Yan  Zhibing Zheng 《ChemMedChem》2023,18(5):e202200573
Cereblon (CRBN) is a substrate receptor of E3 ubiquitin ligase as well as the target of thalidomide and lenalidomide, plays a vital role in endogenous protein degradation. In this article, two series of compounds with novel structure were designed, synthesized and evaluated against CRBN. YJ1b, designed based on our previous finding, shown strong binding affinity toward CRBN (IC50=0.206 μM) by forming a salt bridge interaction with amino acid residue Glu377 of CRBN, it was 13-fold compared with that of lenalidomide (IC50=2.694 μM) in TR-FRET assay. YJ2c and YJ2h, two analogs of YJ1b, also exhibit high binding affinity toward CRBN (IC50=0.211 μM and IC50=0.282 μM, respectively). While, molecular docking and 100 ns molecular dynamic simulation studies were conducted to insight into the unique binding mode of YJ1b, YJ2c and YJ2e toward CRBN. The new compounds with special binding mode in this article may serve for the further optimization and discovery of novel high potent CRBN ligands.  相似文献   

9.
Coarse-grained (CG) force fields have become promising tools for studies of protein behavior, but the balance of speed and accuracy is still a challenge in the research of protein coarse graining methodology. In this work, 20 CG beads have been designed based on the structures of amino acid residues, with which an amino acid can be represented by one or two beads, and a CG solvent model with five water molecules was adopted to ensure the consistence with the protein CG beads. The internal interactions in protein were classified according to the types of the interacting CG beads, and adequate potential functions were chosen and systematically parameterized to fit the energy distributions. The proposed CG force field has been tested on eight proteins, and each protein was simulated for 1000 ns. Even without any extra structure knowledge of the simulated proteins, the Cα root mean square deviations (RMSDs) with respect to their experimental structures are close to those of relatively short time all atom molecular dynamics simulations. However, our coarse grained force field will require further refinement to improve agreement with and persistence of native-like structures. In addition, the root mean square fluctuations (RMSFs) relative to the average structures derived from the simulations show that the conformational fluctuations of the proteins can be sampled.  相似文献   

10.
We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems.  相似文献   

11.
Thermal stability is a limiting factor for effective application of D-psicose 3-epimerase (DPEase) enzyme. Recently, it was reported that the thermal stability of DPEase was improved by immobilizing enzymes on graphene oxide (GO) nanoparticles. However, the detailed mechanism is not known. In this study, we investigated interaction details between GO and DPEase by performing molecular dynamics (MD) simulations. The results indicated that the domain (K248 to D268) of DPEase was an important anchor for immobilizing DPEase on GO surface. Moreover, the strong interactions between DPEase and GO can prevent loop α1′-α1 and β4-α4 of DPEase from the drastic fluctuation. Since these two loops contained active site residues, the geometry of the active pocket of the enzyme remained stable at high temperature after the DPEase was immobilized by GO, which facilitated efficient catalytic activity of the enzyme. Our research provided a detailed mechanism for the interaction between GO and DPEase at the nano–biology interface.  相似文献   

12.
Cyclodextrins (CDs) are highly respected for their ability to form inclusion complexes via host–guest noncovalent interactions and, thus, ensofance other molecular properties. Various molecular modeling methods have found their applications in the analysis of those complexes. However, as showed in this review, molecular dynamics (MD) simulations could provide the information unobtainable by any other means. It is therefore not surprising that published works on MD simulations used in this field have rapidly increased since the early 2010s. This review provides an overview of the successful applications of MD simulations in the studies on CD complexes. Information that is crucial for MD simulations, such as application of force fields, the length of the simulation, or solvent treatment method, are thoroughly discussed. Therefore, this work can serve as a guide to properly set up such calculations and analyze their results.  相似文献   

13.
Poly(N-isopropylacrylamide)(PNIPAAm) grafted onto silica,which may be used for reverse phase chromatography(RPC),was simulated and synthesized for protein separation with temperature-triggered adsorption and desorption.Molecular dynamics simulation at an all-atom level was performed to illustrate the adsorption/desorption behavior of cytochrome c,the model protein,on PNIPAAm-grafted-silica,a temperature responsive adsorbent.At a temperature above the lower critical solution temperature(LCST),the PNIPAAm chains aggregate on the silica surface,forming a hydrophobic surface that is favorable for the hydrophobic adsorption of cytochrome c,which has a high exposure of hydrophobic patches.At temperatures below the LCST,the PNIPAAm chains stretch,forming hydrophilic surface due to hydrogen bonding between PNIPAAm and surrounding water.Desorption of cytochrome c on the PNIPAAm-grafted-silica surface occurs as a result of competition with water,which forms hydrogen bonds with the protein.The conformational transitions of both cytochrome c and PNIPAAm are monitored,providing molecular insight into this temperature-responsive RPC technique.PNIPAAm-grafted-silica beads were synthesized and used for the adsorption and desorption of cytochrome c at approximately 313 K and 290 K,respectively.The experimental results validate the molecular dynamics simulation.In comparison to conventional RPC,using temperature as a driving force for RPC reduces the risk of protein denaturation caused by exposure to chaotropic solvents.Moreover,it simplifies the separation process by avoiding the buffer exchange operations between the steps.  相似文献   

14.
Distortions in the DNA sequence, such as damage or mispairs, are specifically recognized and processed by DNA repair enzymes. Many repair proteins and, in particular, glycosylases flip the target base out of the DNA helix into the enzyme’s active site. Our molecular dynamics simulations of DNA with intact and damaged (oxidized) methyl-cytosine show that the probability of being flipped is similar for damaged and intact methyl-cytosine. However, the accessibility of the different 5-methyl groups allows direct discrimination of the oxidized forms. Hydrogen-bonded patterns that vary between methyl-cytosine forms carrying a carbonyl oxygen atom are likely to be detected by the repair enzymes and may thus help target site recognition.  相似文献   

15.
The interaction of organo-silane adhesive primers with metal oxide surfaces is investigated using molecular dynamics simulations. The organo-silanes studied are of the type used in commercial primers for epoxy adhesives. Aluminum oxide (amorphous) and iron oxide (hematite) are the metal oxide surfaces considered. The simulations are used to elucidate the effects of primer structure, metal oxide composition, morphology and level of hydration on fundamental aspects of the primer-surface interaction. Correlations are made between the results of simulations and previous experiments. The modeling approach may be useful in the design of improved adhesive bonding systems.  相似文献   

16.
P-Glycoprotein (P-gp) is a transmembrane protein belonging to the ATP binding cassette superfamily of transporters, and it is a xenobiotic efflux pump that limits intracellular drug accumulation by pumping compounds out of cells. P-gp contributes to a reduction in toxicity, and has broad substrate specificity. It is involved in the failure of many cancer and antiviral chemotherapies due to the phenomenon of multidrug resistance (MDR), in which the membrane transporter removes chemotherapeutic drugs from target cells. Understanding the details of the ligand–P-gp interaction is therefore critical for the development of drugs that can overcome the MDR phenomenon, for the early identification of P-gp substrates that will help us to obtain a more effective prediction of toxicity, and for the subsequent outdesign of substrate properties if needed. In this work, a series of molecular dynamics (MD) simulations of human P-gp (hP-gp) in an explicit membrane-and-water environment were performed to investigate the effects of binding different compounds on the conformational dynamics of P-gp. The results revealed significant differences in the behaviour of P-gp in the presence of active and non-active compounds within the binding pocket, as different patterns of movement were identified that could be correlated with conformational changes leading to the activation of the translocation mechanism. The predicted ligand–P-gp interactions are in good agreement with the available experimental data, as well as the estimation of the binding-free energies of the studied complexes, demonstrating the validity of the results derived from the MD simulations.  相似文献   

17.
气体在水中的分子动力学模拟   总被引:4,自引:0,他引:4  
采用分子动力学(MD)模拟的方法在常温及工业应用背景条件下对CH4、NH3、CO2、O2这些气体在水中的结构及扩散情形进行了研究。MD模拟可以为这些涉及到气体在水中的工业应用情形的机理提供分子水平的解释,同时MD模拟还可为一些不易实验测定扩散性质的体系提供工程初步设计和过程开发所需的数据。  相似文献   

18.
Recent experiments in function mechanism study reported that a pH low-insertion peptide (pHLIP) can insert into a zwitterionic palmitoyloleoylphosphatidylcholine (POPC) lipid bilayer at acidic pH while binding to the bilayer surface at basic pH. However, the atomic details of the pH-dependent interaction of pHLIP with a POPC bilayer are not well understood. In this study, we investigate the detailed interactions of pHLIP with a POPC bilayer at acidic and basic pH conditions as those used in function mechanism study, using all-atom molecular dynamics (MD) simulations. Simulations have been performed by employing the initial configurations, where pHLIP is placed in aqueous solution, parallel to bilayer surface (system S), partially-inserted (system P), or fully-inserted (system F) in POPC bilayers. On the basis of multiple 200-ns MD simulations, we found (1) pHLIP in system S can spontaneously insert into a POPC bilayer at acidic pH, while binding to the membrane surface at basic pH; (2) pHLIP in system P can insert deep into a POPC bilayer at acidic pH, while it has a tendency to exit, and stays at bilayer surface at basic pH; (3) pHLIP in system F keeps in an α-helical structure at acidic pH while partially unfolding at basic pH. This study provides at atomic-level the pH-induced insertion of pHLIP into POPC bilayer.  相似文献   

19.
We carried out molecular dynamics simulations and free energy calculations for a series of binary and ternary models of the cisplatin, transplatin and oxaliplatin agents binding to a monomeric Atox1 protein and a dimeric Atox1 protein to investigate their interaction mechanisms. All three platinum agents could respectively combine with the monomeric Atox1 protein and the dimeric Atox1 protein to form a stable binary and ternary complex due to the covalent interaction of the platinum center with the Atox1 protein. The results suggested that the extra interaction from the oxaliplatin ligand–Atox1 protein interface increases its affinity only for the OxaliPt + Atox1 model. The binding of the oxaliplatin agent to the Atox1 protein might cause larger deformation of the protein than those of the cisplatin and transplatin agents due to the larger size of the oxaliplatin ligand. However, the extra interactions to facilitate the stabilities of the ternary CisPt + 2Atox1 and OxaliPt + 2Atox1 models come from the α1 helices and α2-β4 loops of the Atox1 protein–Atox1 protein interface due to the cis conformation of the platinum agents. The combinations of two Atox1 proteins in an asymmetric way in the three ternary models were analyzed. These investigations might provide detailed information for understanding the interaction mechanism of the platinum agents binding to the Atox1 protein in the cytoplasm.  相似文献   

20.
Cold-adapted enzymes feature a lower thermostability and higher catalytic activity compared to their warm-active homologues, which are considered as a consequence of increased flexibility of their molecular structures. The complexity of the (thermo)stability-flexibility-activity relationship makes it difficult to define the strategies and formulate a general theory for enzyme cold adaptation. Here, the psychrophilic serine hydroxymethyltransferase (pSHMT) from Psychromonas ingrahamii and its mesophilic counterpart, mSHMT from Escherichia coli, were subjected to μs-scale multiple-replica molecular dynamics (MD) simulations to explore the cold-adaptation mechanism of the dimeric SHMT. The comparative analyses of MD trajectories reveal that pSHMT exhibits larger structural fluctuations and inter-monomer positional movements, a higher global flexibility, and considerably enhanced local flexibility involving the surface loops and active sites. The largest-amplitude motion mode of pSHMT describes the trends of inter-monomer dissociation and enlargement of the active-site cavity, whereas that of mSHMT characterizes the opposite trends. Based on the comparison of the calculated structural parameters and constructed free energy landscapes (FELs) between the two enzymes, we discuss in-depth the physicochemical principles underlying the stability-flexibility-activity relationships and conclude that (i) pSHMT adopts the global-flexibility mechanism to adapt to the cold environment and, (ii) optimizing the protein-solvent interactions and loosening the inter-monomer association are the main strategies for pSHMT to enhance its flexibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号