首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, graphene nanoplatelets (GNPs) were incorporated into poly(vinylidene fluoride) (PVDF), poly(ethylene oxide) (PEO), and PVDF/PEO blends using solution casting method in order to achieve binary and ternary polymer nanocomposites. The focus of the work is on the compatibilizing effects of the GNPs on partially miscible PVDF/PEO blends. X-ray diffraction method, rheological measurements, scanning electron microscopy (SEM), and atomic force microscopy observations enabled us to track the dispersion state and localization of the graphene nanosheets in the nanocomposites. The results exhibited that the nanoplatelets were preferentially distributed through the PVDF phase and/or at the interface of the PVDF/PEO phases. Evaluation of the wetting parameter for the PVDF/PEO/GNPs nanocomposite also verified better affinity of the selected nanofiller with the PVDF component. Extend of the miscibility in the nanocomposites was studied by a well-known rheological method. A tangible increment in binodal (Tb) and spinodal (Ts) decomposition temperatures by addition of a very low content of the GNPs (0.5 wt %) revealed well-defined compatibilization effects of the graphene on this binary polymer blend. SEM images at different temperatures confirmed the rheologically determined liquid–liquid phase diagram. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48017.  相似文献   

2.
太阳能电池封装用PVDF/PMMA共混薄膜的表面形态及组成研究   总被引:1,自引:0,他引:1  
将聚偏氟乙烯(PVDF)粉末与聚甲基丙烯酸甲酯(PMMA)颗粒物理共混后采用熔融挤出的方法制备成共混薄膜。通过差示扫描量热、X射线衍射、原子力显微镜和X射线光电子能谱等方法研究了PVDF/PMMA共混薄膜表面一定范围内的形态和组成。研究发现,PVDF与PMMA具有良好的相容性,两者间的相互作用阻碍了PVDF在共混体系中的结晶,并通过红外吸收光谱证明了类氢键的存在。PVDF在共混体系中可以发生明显的表面富集现象,表面自由能低的PVDF在表面相的含量大于体相。  相似文献   

3.
The polymeric blend was fabricated with crystalline poly(vinylidene fluoride) (PVDF)/amorphous functionalized-poly(methyl methacrylate) (PMMA) in 70/30 w/w ratio by chemical mixing method. Functionalization of PMMA was achieved with 2-amino-5-nitrobenzoic acid. The prepared polymer blend was used as a matrix to synthesize nanocomposites with undoped/doped zinc oxide (ZnO) nanoparticles. Doping in ZnO was achieved with vanadium, sulfur, and dysprosium elements as a dopant. The structural, optical, electronic, and morphological properties of undoped/doped nanosized ZnO and blended nanocomposites were accessed through sophisticated analytical techniques, that is, Fourier transform infrared (FTIR), ultraviolet–visible (UV–vis), UV–vis–diffuse reflectance spectra, nuclear magnetic resonance, fluorescence spectroscopy, X-ray diffraction (XRD), transmission electron microscopy, and scanning electron microscopy. The FTIR band at 1165–1176 cm−1 in functionalized-PMMA indicate the formation of aliphatic C-N bond along with aromatic 1H chemical shift (δ) at 7.134, 7.829 and 8.210 ppm confirm the successfully functionalization of PMMA. The prominent XRD peak at 2θ = 20.8° in nanocomposites shown improvement in β-phase of PVDF. The results show that Dy doped ZnO nanoparticles create remarkable effect on various properties of nanocomposites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47116.  相似文献   

4.
Ternary blends composed of matrix polymer poly(vinylidene fluoride) (PVDF) with different proportions of poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) blends were prepared by melt mixing. The miscibility, crystallization behavior, mechanical properties and hydrophilicity of the ternary blends have been investigated. The high compatibility of PVDF/PMMA/PVP ternary blends is induced by strong interactions between the carbonyl groups of the PMMA/PVP blend and the CF2 or CH2 group of PVDF. According to the Fourier transform infrared and wide‐angle X‐ray difffraction analyses, the introduction of PMMA does not change the crystalline state (i.e. α phase) of PVDF. By contrast, the addition of PVP in the blends favors the transformation of the crystalline state of PVDF from non‐polar α to polar β phase. Moreover, the crystallinity of the PVDF/PMMA/PVP ternary blends also decreases compared with neat PVDF. Through mechanical analysis, the elongation at break of the blends significantly increases to more than six times that of neat PVDF. This confirms that the addition of the PMMA/PVP blend enhances the toughness of PVDF. Besides, the hydrophilicity of PVDF is remarkably improved by blending with PMMA/PVP; in particular when the content of PVP reaches 30 wt%, the water contact angle displays its lowest value which decreased from 91.4° to 51.0°. Copyright © 2011 Society of Chemical Industry  相似文献   

5.
采用非晶态聚甲基丙烯酸甲酯(PMMA)与结晶型聚偏氟乙烯(PVDF)熔融共混.制备了PVDF/PMMA复合材料。利用Hilderbrand的溶解参数原则、差示扫描量热法(DSC)和微分热重法(DTG)分析了PVDFfPMMA共混物的相容性和热性能,并用X射线衍射仪和扫描电子显微镜研究了共混片材的微观结构与形态。结果表明,PMMA与PVDF具有良好的相容性,PMMA的加入降低了PVDF的结晶能力和熔融温度;随着PMMA的含量增加,PVDF的分解温度降低;PVDF的结晶度降低,球晶尺寸增大。另外,PMMA的引入改变了PVDF的结晶结构,导致了β相形成。  相似文献   

6.
The crystallization of poly(vinylidene fluoride) (PVDF) was observed after the poly(methyl methacrylate) (PMMA) component was extracted from the PVDF/PMMA (50/50) composite nanofiber fabricated by electrospray deposition, even though the original composite showed a completely amorphous pattern in the wide‐angle X‐ray diffraction. The content of the β‐crystal form in the crystalline region depended on the PVDF/PMMA composite ratios and the type of solvents used for the extraction of the PMMA component, e.g., chloroform and toluene. Thus, the content of the β‐crystal form can be controlled by selecting the original PVDF/PMMA composition and the solvent used to extract the PMMA component. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Use of supercritical carbon dioxide (scCO2) as a blowing agent to generate microcellular polymer foams (MPFs) has recently received considerable attention due to environmental concerns associated with conventional organic blowing agents. While such foams derived from amorphous thermoplastics have been previously realized, semicrystalline MPFs have not yet been produced in a continuous scCO2 process. This work describes the foaming of highly crystalline poly(vinylidene fluoride) (PVDF) and its blends with amorphous polymers during extrusion. Foams composed of neat PVDF and immiscible blends of PVDF with polystyrene exhibit poor cell characteristics, whereas miscible blends of PVDF with poly(methyl methacrylate) (PMMA) yield foams possessing vastly improved morphologies. The results reported herein illustrate the effects of blend composition and scCO2 solubility on PVDF/PMMA melt viscosity, which decreases markedly with increasing PMMA content and scCO2 concentration. Morphological characterization of microcellular PVDF/PMMA foams reveals that the cell density increases as the PMMA fraction is increased and the foaming temperature is decreased. This study confirms that novel MPFs derived continuously from semicrystalline polymers in the presence of scCO2 can be achieved through judicious polymer blending.  相似文献   

8.
The preparation of binary polymer blend nanocomposites with different nanomaterials is a relatively new approach to achieve desired physical, thermal, mechanical, and electrochemical properties because it has the collective effects of both polymer blending and fillers. Transition metal oxides constitute a large class among those fillers because the precursors for metal oxides are abundantly available. However, very few studies have been accomplished on incorporating transition metal oxides into binary polymer blends. In this project, cuprous oxide (CuO) nanoparticles (NPs) with a crystallite size of 24.95 nm were incorporated into poly(vinyl chloride)/poly(methyl methacrylate) (PVC/PMMA) blend, and thin films of the nanocomposites were obtained through a solution casting technique. Scanning electron microscopy, X‐ray diffraction, universal testing machine testing, thermogravimetric analysis, and cyclic voltammetry were used to study morphological, crystalline, mechanical, thermal, and electrochemical properties of the nanocomposites. Scanning electron micrographs showed that the blend was completely miscible and CuO NPs were well dispersed within the matrix. Mechanical properties greatly improved with each wt% addition of CuO NPs. Thermogravimetric analysis thermograms revealed a two‐stage degradation for neat PVC/PMMA blend and CuO/PVC/PMMA. Cyclic voltammetry results indicated a free electron transfer in neat blend that further improved with the incorporation of increasing percentage of CuO NPs. J. VINYL ADDIT. TECHNOL., 23:80–85, 2017. © 2015 Society of Plastics Engineers  相似文献   

9.
In this work, a mutually miscible third polymer, poly(methyl methacrylate) (PMMA), was incorporated into an immiscible poly(vinylidene fluoride)/polylactide (PVDF/PLA) blend (weight ratio 70:30). It was found that incorporation of PMMA in an appropriate amount (30–60 wt%) induced a marked improvement in fracture toughness. A five times enlargement of the elongation at break can be achieved by introducing 30 wt% PMMA. In order to understand the underlying toughening mechanism, SEM, dynamic mechanical analysis (DMA), XRD and DSC were applied to study the variations in morphology, the interaction between the three components and the crystallization behavior. SEM micrographs showed that the PMMA preferred to locate at the interface of PVDF and PLA, which was attributed to the mutual miscibility of PVDF with PMMA and PLA. Furthermore, a variety of thermal characteristics such as Tg and Tm induced by the entanglement of PVDF, PMMA and PLA at the interface were illustrated in DMA and DSC curves. Obviously, the interface consisting of the entanglement of PVDF, PLA and PMMA acted as a linkage to improve interfacial adhesion, which was regarded as the main toughening mechanism. This work provides a potential strategy to realize the interfacial enhancement of an immiscible blend via the incorporation of a mutually miscible third polymer. © 2016 Society of Chemical Industry  相似文献   

10.
A nanocomposite of Poly(vinylidene fluoride) (PVDF) was prepared with graphene sheets (GSs), which are a novel filler by a solution method. The structure‐properties relationships of PVDF/GSs nanocomposites were studied. The results of differential scanning calorimetry and X‐ray diffraction show that addition of GSs to the PVDF matrix promotes an α phase to β phase transformation of the polymer crystal. The nanocomposites exhibit significant increases in dynamic mechanical properties and thermal stability compared to the neat PVDF. In addition, the incorporation of GSs in PVDF indicated excellent optical transparency at the lowest weight fractions of GSs and modified wettability of PVDF. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

11.
Ionic polymer–metal composite (IPMC) actuators that display continuously large actuation displacements without back relaxation and with large blocking force at low direct current (DC) voltages are used as biomimetic sensors, actuators and biomedical devices. This article reports the preparation and actuation performance of new IPMC actuators based on the polyvinylidene fluoride (PVDF)/polystyrene sulfonic acid (PSSA)/polyvinyl pyrrolidone (PVP) polymer blend membrane, which requires low voltage DC. The performance results of the proposed IPMC actuators are compared with Nafion‐based IPMC actuators. In the blend membrane, PVDF is the hydrophobic polymer, PSSA is the polyelectrolyte, and PVP is the hydrophilic basic polymer. The proposed IPMC actuators based on the PVDF/PSSA/PVP blend membrane of polymer mixture ratios of 60/15/25 and 50/25/25 gave higher actuation displacement and higher blocking force at low DC voltages than the Nafion‐based IPMC actuator. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

12.
The role of the single diluents and mixed diluents on the poly (vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) blend membranes via thermally induced phase separation (TIPS) process was investigated. The crystallization behaviors of PVDF in the diluted samples were examined by differential scanning calorimetry. The melting and crystallization temperatures of those diluted PVDF blend were decreased with the enhanced interactions between polymer chains and diluent molecules. The crystallinity of PVDF in the diluent was always higher than that obtained in PVDF blend sample. This can be explained by the dilution effects, which increased the average spatial separation distances between crystallizable chains. Thus, the PVDF crystallization was favored. Additionally, solid‐liquid (S‐L) phase separation occurred in the quenched samples. Illustrated by scanning electron microscopy, inter‐ and intraspherulitic voids were formed in the ultimate membranes, which related to the polymer/diluent interactions, the kinetics of crystallization and diluent rejection from the growing crystal. The porosity of the PVDF blend membranes obtained from the mixed diluents was higher than those obtained from the single diluent samples. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
An investigation was conducted to establish property-morphology relationships in polymethylmethacrylate/polyvinylidenefluoride (PMMA/PVDF) blends. All blends were compounded in a twin-screw extruder and then processed by injection molding Mechanical properties of blends of various compositions were studied by dynamic mechanical and impact strength measurements. The presence of crystalline regions in blends was determined by Differential Scanning Calorimetry (DSC). Morphology of fracture surfaces of blends was studied by Spinning Electron Microscopy (SEM). PMMA/PVDF blends were found to form compatible mixtures over a wide range of blend composition. Changes in dynamic mechanical properties upon annealing were found to be a direct function of blond morphology. Electron microscopic evidence showed no signs of phase separation. DSC measurements detected crystalline regions in all blends containing 40 percent or more (by weight) PVDF.  相似文献   

14.
N. Moussaif  G. Groeninckx   《Polymer》2003,44(26):7899-7906
Polyvinylidene fluoride (PVDF)–organoclay nanocomposites were prepared by melt-extrusion using polymethylmethacrylate (PMMA) as an interfacial agent. These nanocomposite materials were analysed with respect to their morphological and rheological properties. The nanophase morphology development and nanophase dispersion were studied using TEM. A fine dispersion of partially to nearly fully exfoliated silicate layers in miscible PVDF/PMMA blend matrices was observed when organophilic montmorillonite was used. Increasing the amount of PMMA in the PVDF/PMMA blend leads to high degree of exfoliation.

The rheological behaviour of intercalated/exfoliated PVDF/PMMA nanocomposites containing various concentrations of organophilic silicate was also investigated. At low frequencies, the storage modulus is increasing with increasing PMMA content and the frequency dependence of the storage modulus gradually changes from liquid-like to solid-like for nanocomposites when 10 wt% of PMMA is added, indicating formation of a network structure.

Dynamic mechanical investigations show a dramatic increase of the storage modulus in the rubbery plateau compared to conventional mineral fillers, as a result of the network structure. Due to the ‘nano’-sized dispersion, property efficiency is already realized at low loading levels (3–5 wt%).  相似文献   


15.
A well‐defined amphiphilic block copolymer consisting of a hydrophobic block poly(methyl methacrylate) (PMMA) and a hydrophilic block poly[N,N–2‐(dimethylamino) ethyl methacrylate] (PDMAEMA) was synthesized by activator generated by the electron transfer for atom transfer radical polymerization method (AGET ATRP). Kinetics study revealed a linear increase in the graph concentration of PMMA‐b‐PDMAEMA with the reaction time, indicating that the polymer chain growth was consistent with a controlled process. The gel permeation chromatography results indicated that the block copolymer had a narrow molecular weight distribution (Mw/Mn = 1.42) under the optimal reaction conditions. Then, poly(vinylidene fluoride) (PVDF)/PMMA‐b‐PDMAEMA blend membranes were prepared via the standard immersion precipitation phase inversion process, using the block copolymer as additive to improve the hydrophilicity of the PVDF membrane. The presence and dispersion of PMMA‐b‐PDMAEMA clearly affected the morphology and improved the hydrophilicity of the as‐synthesized blend membranes as compared to the pristine PVDF membranes. By incorporating 15 wt % of the block copolymer, the water contact angle of the resulting blend membranes decreased from pure PVDF membrane 98° to 76°. The blend membranes showed good stability in the 20 d pure‐water experiment. The bovine serum albumin (BSA) absorption experiment revealed a substantial antifouling property of the blend membranes in comparison with the pristine PVDF membrane. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42080.  相似文献   

16.
Polyvinyl(alcohol)/starch/graphene nanocomposites with enhanced properties were prepared by solution mixing and casting process with the aid of glycerol as plasticizer and citric acid (CA) as crosslinker. The dispersion of graphene in water was made by sonication prior to mixing it with PVA/starch solution. The effect of varying the concentration of CA crosslinker in PVA/starch nanocomposite with 0.5 wt% of graphene was studied in detail. The structural changes, properties and morphologies were characterized by different techniques. The FTIR results revealed that the crosslinking reaction enhanced the interaction between the hydroxyl groups in PVA and/or starch and the oxygen-containing groups present on the graphene sheets. The mechanical properties were also improved by the crosslinking reaction and reinforcing with graphene. The formation of PVA crystal from solution was interrupted to a large extent by the interface at the amorphous zone of polymers and also the crosslinks between the PVA and starch polymer chains. The total crystallinity of the system was found to decrease with increase in degree of crosslinking. There was a marked increase in the thermal stability as the blend system was crosslinked with CA. CA crosslinking produced compact bulk morphology and improved the homogeneity between PVA and starch. The results of this study illustrate that citric acid can be an effective crosslinker and/or compatibilizer in PVA/starch/graphene nanocomposites for improving properties, and for this reason it is a candidate to replace non-biodegradable plastic films in food packaging sector.  相似文献   

17.
Poly(methyl methacrylate)/poly(ethylene oxide) (90/10) blend containing various contents of functionalized graphene was prepared through solution technique and characterized to investigate the effects of functionalized graphene content on mechanical, thermal, and electrical properties of the nanocomposites. Infrared results revealed the interaction between matrix and functionalized graphene. Electron microscopy images of the nanocomposites exhibited a good dispersion of functionalized graphene nanosheets in the blend. The incorporation of functionalized graphene significantly increased the thermal stability and mechanical properties of poly(methyl methacrylate)/poly(ethylene oxide) blend. At electrical percolation threshold achieved at functionalized graphene loading of 4.27?wt%, the conductivity of the nanocomposites was increased by more than eight orders of magnitude.  相似文献   

18.
The poly(vinlylidene fluoride) (PVDF) was incorporated within the compound matrix of poly(ethylmethacrylate) (PEMA)/poly(methylmethacrylate) (PMMA) using solution cast technique. The importance of PVDF in the miscibility of PEMA/PMMA matrix was investigated using FT-IR, DSC, SEM and AFM technique. Crystalline particle size of PVDF in PEMA/PMMA matrix was analyzed using XRD characterization. Single-phase compatibility with maximum crystallinity along with the maximum value of hardness was observed when PVDF/PMMA/PEMA were blended in equal weight ratio. The PVDF particle act as reinforcing material within the compound matrix of PEMA/PMMA, and hence, improves the properties of prepared ternary blends.  相似文献   

19.
A one-pot method which involves peeling graphite nanosheets (GNs) off into graphenes in polymer solution and in situ forming polymer/graphene sheets nanocomposites by using ball milling is presented. Via this approach, nanocomposites based on maleic anhydride grafted poly (ethylene-co-vinyl acetate) (EVA-g-MAH) and graphene sheets comprising one to five layers were accomplished. The resulted EVA-g-MAH/graphene nanocomposites displayed a percolation threshold around 5.0 wt %, much lower than that of the EVA-g-MAH/GNs nanocomposites prepared by direct solution blending (∼ 13.0 wt %). The nanocomposite containing 10 wt % of graphene sheets exhibited a higher maximum decomposition temperature by ∼ 10°C when compared with the virgin polymer and the corresponding nanocomposite loaded with 10 wt % of GNs. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
We employed thin film blends of diblock copolymers with functional homopolymers as a simple strategy to incorporate organic functional materials into nanodomains of diblock copolymers without serious synthesis. A blend pair of polystyrene-poly(methyl methacrylate) (PS-PMMA) diblock copolymers and poly(vinylidene fluoride) (PVDF) was selected as a model demonstration because PVDF is a well-known ferroelectric polymer and completely miscible with amorphous PMMA. Thin films of symmetric PS-PMMA copolymers provided the nanometer-sized PMMA lamellae, macroscopically parallel to the substrate, in which PVDF chains were dissolved. Thus, amorphous PVDF chains were effectively confined in the PMMA lamellae of thin film blends. The location of PVDF chains in the PMMA lamellae was investigated by the dependence of the lamellar period on the volume fraction of PVDF, from which we found that PVDF chains were localized in the middle of the PMMA lamellae. After the crystallization of PVDF, however, some of PVDF migrated to the surface of the film and formed small crystallites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号