首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the potential of silicate nanotubes of the naturally occurring mineral halloysite as filler for polyamide 6 (PA 6) nanocomposites is evaluated. Several PA 6/halloysite composites with 0 wt% to 30 wt% filler loading using two different grades of PA 6 were prepared. In order to elucidate the influence of molecular weight on the properties of the nanocomposites, mechanical resp. rheological experiments (i) below the glass transition temperature Tg of PA 6, (ii) between Tg and the melting temperature Tm of PA 6 and (iii) above Tm were performed. Our investigations reveal that the addition of halloysite nanotubes favours the formation of the γ-modification for the low molar mass PA 6. Furthermore, the storage modulus, the tensile modulus and the yield stress of the composites increase with concentration of halloysite, an effect which is strongly pronounced at very low filler fractions for the low molar mass PA 6 composites. The increase of the storage modulus which was measured in dynamic-mechanical experiments is mostly dominant in the temperature interval from 55 °C to 100 °C, i.e. above the glass transition temperature of PA 6. Rheological investigations showed that the shear viscosity is only moderately increased by the addition of a low fraction of halloysite to PA 6, and nanocomposites with 30 wt% halloysite can be still processed. In summary, halloysite nanotubes are promising and inexpensive candidates for increasing the stiffness of PA 6 while maintaining very good flow properties.  相似文献   

2.
A polyamide 66/3-aminopropyl-terminated poly(dimethylsiloxane) (PA66/APDMS)-carboxylate multiwalled carbon nanotubes (CMWNTs) nanocomposite (PA66/APDMS-CMWNTs) was synthesized using a one-pot method, and the product was melt-spun into fibers. The glass transition temperature (Tg) of the PA66/APDMS-CMWNTs nanocomposite fiber is 68.0°C, which is 22% higher than that of the pure PA66 fiber. This result indicates that there is a strong interfacial interaction between APDMS-CMWNTs and the PA66. Furthermore, the crystallinity of PA66/APDMS-CMWNTs nanocomposite fiber reaches a maximum due to the addition of APDMS-CMWNTs. Additionally, the tensile strength and Young's modulus of PA66/APDMS-CMWNTs nanocomposite fiber are 167% and 631% higher, respectively, than that of the pure PA66 fiber. The strengthening mechanism was discussed using force balance-based expression, which demonstrates that the stress on the PA66 is more efficiently transferred to the APDMS-CMWNTs. These results argue that using APDMS-CMWNTs as a filler can enhance the physical-mechanical properties of PA66 with an elevated degree never being reported.  相似文献   

3.
Friction and wear characteristics of polyamide 66 (PA66) and the composites of organoclay modified by styrene–ethylene/butylene–styrene triblock copolymer grafted with 1.84 wt% of maleic anhydride (SEBS‐g‐MA) were studied using an Universal Micro Tribometer reciprocating friction and wear tester. The morphologies of the wear tracks of PA66 and the composites were observed using a scanning electron microscope. The results showed that plastic deformation induced by the traction of the harder steel ball occurred on the worn surfaces of PA66 and the composite which were reinforced by SEBS‐g‐MA copolymer. It was found that the average frictional coefficient and specific wear rate of PA66/SEBS‐g‐MA binary composite are lowest under the same conditions. This indicates that toughness and wear resistance of PA66 matrix are improved with the incorporation of SEBS‐g‐MA copolymer. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

4.
The thermal and mechanical properties of blends, obtained by mixing polyamide 6 (PA6) and an amorphous aromatic copolyamide G21 (ISO nomenclature PA 6I/6T), were investigated by differential scanning calorimetry, dynamic mechanical analysis, and mechanical tensile tests. Quenched blends show a single glass transition temperature; the Tg-composition trend was interpreted by means of the Gordon–Taylor equation. The half-time of crystal-lization decreases by increasing the G21 content and this indicates a depression of the overall crystallization rate. A small decrease in the equilibrium melting temperature of PA6 in the blends was observed; this finding suggests that the interaction parameter in PA6/G21 blends is probably very small. The dynamic mechanical analysis of crystallized blends suggests the presence of a homogeneous amorphous phase even if the crystallization of PA6 occurred. The tensile mechanical properties reveal that G21 acts as stiffener of PA6. The collected experimental data suggest that PA6 and G21 are miscible in the composition range investigated. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Interfacial polymerization to polyamide 6, 6 followed by introduction of ionic groups was performed on the surface of short glass fibers. The ionic interphase-modified fibers were used with poly(ethylene-co-methacrylic acid) (DuPont Surlyn) to prepare composites with specific fiber-matrix interactions. Fiber treatment increased composite tensile and bending properties. An increase in the average fiber length was observed, which was attributed to a decrease in the fiber attrition during mixing. The effect of increasing temperature on the composite mechanical properties was studied. Different behavior was observed before and after the glass transition temperature, Tg, of the matrix. The dynamic mechanical measurements showed an increase in the Tg of the matrix after the treatments, which is attributed to a decrease in chain mobility at the interface resulting from increased interactions of the treated fiber surface with the polymer. Scanning electron microscopy of fractured composites after tensile tests revealed a smooth fiber surface with no polymer at the surface for the untreated composites. Adhered polymer was clearly observed on the surface of treated fibers, indicating better fiber wetting by the matrix. This improved adhesion was attributed to the grafted nylon molecules at the glass fiber surface.  相似文献   

6.
We report the effect of new sustainable inorganic phosphate glass (P‐glass) flame retardants for polyamide 6,6 (PA6,6). Three P‐glasses differing in chemical composition and glass transition temperature (Tg) were prepared and their flame retardant effect on PA6,6 was studied by cone calorimetry, thermogravimetric analysis, and SEM‐EDX. The effect of high and intermediate Tg P‐glasses on the thermal stability of PA6,6 was negligible as compared to that of the low Tg P‐glass due to the hygroscopic nature of the latter. However, the char formation was independent of the P‐glass composition and was observed to increase by 30% in the presence of P‐glass. The low Tg P‐glass composition (i.e., ILT‐1) was found to be a promising flame retardant for PA6,6 at a concentration of up to 15% by weight. Cone calorimetry data showed that the ILT‐1 decreased both the peak heat release rate and the total heat amount released from the PA6,6/ILT‐1 hybrids, resulting in an efficient formation of a glassy char layer. In contrast to the intermediate and high Tg P‐glasses of this study, SEM‐EDX indicated that the ILT‐1 P‐glass was well dispersed in the PA6,6 matrix to yield a typical droplet‐in‐matrix phase morphology in the melt‐blended binary immiscible P‐glass/PA6,6 hybrids. POLYM. ENG. SCI., 55:1741–1748, 2015. © 2014 Society of Plastics Engineers  相似文献   

7.
In this work, the relationship between molecular mobility of polyamide 6,6 amorphous phase and mechanical properties is studied. PA66 formulations having different glass transition temperatures (Tg) obtained by additivation, chemical modification of the polyamide chains, and/or water conditioning at different hygrometry levels, are considered. The main emphasis is put on the impact strength, as measured by instrumented Charpy impact tests over a broad temperature range. It is observed that the brittle‐tough transition temperature TB/T is closely correlated with the Tg of the samples rather than to the β secondary relaxation. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43457.  相似文献   

8.
To improve the properties of polyamide 6 (PA6) composites, a series of modified PA6 composites was prepared by reaction extrusion. An amorphous PA6 was first obtained by the complexing reaction of Li+ in lithium chloride with amino groups, and then epoxy resins, nano‐SiO2 as well as POE‐g‐MAH were in turn added into the PA6/LiCl system. The effect of different additives on the crystallization behavior and mechanical properties of PA6 composites was well‐studied by X‐ray diffraction (XRD), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), and mechanical properties tests. The results demonstrated that PA6 was amorphous at 6 phr lithium chloride and a network structure was formed in PA6 matrix in the presence of epoxy resins, thus the mechanical properties of composites greatly were enhanced. However too many nano‐SiO2 particles might impair the tensile strength of PA6 composites. Additionally, a PA6 composite with excellent properties was obtained in the presence of POE‐g‐MAH due to the crystal form change in PA6 matrix and the strong interaction between PA6 and POE‐g‐MAH. POLYM. COMPOS., 35:985–992, 2014. © 2013 Society of Plastics Engineers  相似文献   

9.
The addition of maleic anhydride grafted polybutadiene (PB‐g‐MAH) can greatly improve the compatibility of polyamide 66 (PA66)/acrylonitrile‐butadiene‐styrene copolymer (ABS) blends. Unlike the commonly used compatibilizers in polyamide/ABS blends, PB‐g‐MAH is compatible with the ABS particles' core phase polybutadiene (PB), rather than the shell styrene‐acrylonitrile (SAN). The compatibility and interaction of the components in the blends were characterized by Fourier transform‐infrared spectra (FTIR), Molau tests, melt flow index (MFI), dynamic mechanical analyses (DMA), and scanning electron microscopic (SEM) observations. The results show that PB‐g‐MAH can react with the amino end groups in PA66 while entangle with the PB phase in ABS. In this way, the compatibilizer anchors at the interface of PA66/ABS blend. The morphology study of the fracture sections before and after tensile test reveals that the ABS particles were dispersed uniformly in the PA66 matrix and the interfacial adhesion between PA66 and ABS was increased significantly. The mechanical properties of the blends thus were enhanced with the improving of the compatibility. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

10.
The crystallization behaviors, dynamic mechanical properties, tensile, and morphology features of polyamide1010 (PA1010) blends with the high‐impact polystyrene (HIPS) were examined at a wide composition range. Both unmodified and maleic‐anhydride‐(MA)‐grafted HIPS (HIPS‐g‐MA) were used. It was found that the domain size of HIPS‐g‐MA was much smaller than that of HIPS at the same compositions in the blends. The mechanical performances of PA1010–HIPS‐g‐MA blends were enhanced much more than that of PA1010–HIPS blends. The crystallization temperature of PA1010 shifted towards higher temperature as HIPS‐g‐MA increased from 20 to 50% in the blends. For the blends with a dispersed PA phase (≤35 wt %), the Tc of PA1010 shifted towards lower temperature, from 178 to 83°C. An additional transition was detected at a temperature located between the Tg's of PA1010 and PS. It was associated with the interphase relaxation peak. Its intensity increased with increasing content of PA1010, and the maximum occurred at the composition of PA1010–HIPS‐g‐MA 80/20. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 857–865, 1999  相似文献   

11.
Blends of polyamide 6 (PA6) and polycarbonate (PC) have been investigated, over a full range of composition, to check interactions between them. SEM observations show that the mixtures are characterized by domains of clearly segregated homophases and voids between the two polymers. DSC and DMTA data indicate the presence of two Tg' s, corresponding to two separate phases, with the Tg of the PC phase decreasing on increasing the PA6 amount. Moreover, the crystallization kinetics of PA6 is slightly showed down by the PC. Chemical reactions between the two polymers are supposed to give rise to low molar mass compounds, as shown by GPC; these species plasticize the PC and partially dissolve into the molten polyamide, causing decrease of PC Tg and reduction of overall crystallization rate of PA6. Apparent influence of PC on melting temperature and enthalpy of PA6 is also discussed.  相似文献   

12.
To reveal the effect of the nigrosine dye, that the addition of the dye lowers the crystallization point (Tc) of molten polyamide resins with substantially no shift in the melting point (Tm), thus suppressing the crystallization enhancement of the crystalline nucleation agents, the characteristics of polyamide 66 (PA‐66) containing nigrosine dye EX (N‐EX) were investigated. Differential scanning calorimetry (DSC) analysis showed that the addition of N‐EX reduced the crystallization rate and Tc of molten PA‐66 with substantially no shift in Tm, and the crystallization enthalpy per unit of weight of PA‐66 was substantially constant. Tc of molten PA‐66 was lowered with an increase in the amount of N‐EX and reached its maximum at 13 wt % N‐EX. Dynamic mechanical analysis showed that the glass‐transition temperature and the secondary glass‐transition temperature increased with an increasing amount of the dye. On the other hand, the DSC and X‐ray diffraction results indicated that no dye molecule was present in the crystal structure of PA‐66. This effect of the nigrosine dye on PA‐66 is in contrast to those of crystalline nucleation agents, plasticizers, and antiplasticizers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3270–3274, 2006  相似文献   

13.
A highly novel nano‐CaCO3 supported β‐nucleating agent was employed to prepare β‐nucleated isotactic polypropylene (iPP) blend with polyamide (PA) 66, β‐nucleated iPP/PA66 blend, as well as its compatibilized version with maleic anhydride grafted PP (PP‐g‐MA), maleic anhydride grafted polyethylene‐octene (POE‐g‐MA), and polyethylene‐vinyl acetate (EVA‐g‐MA), respectively. Nonisothermal crystallization behavior and melting characteristics of β‐nucleated iPP and its blends were investigated by differential scanning calorimeter and wide angle X‐ray diffraction. Experimental results indicated that the crystallization temperature (T) of PP shifts to high temperature in the non‐nucleated PP/PA66 blends because of the α‐nucleating effect of PA66. T of PP and the β‐crystal content (Kβ) in β‐nucleated iPP/PA66 blends not only depended on the PA66 content, but also on the compatibilizer type. Addition of PP‐g‐MA and POE‐g‐MA into β‐nucleated iPP/PA66 blends increased the β‐crystal content; however, EVA‐g‐MA is not benefit for the formation of β‐crystal in the compatibilized β‐nucleated iPP/PA66 blend. It can be relative to the different interfacial interactions between PP and compatibilizers. The nonisothermal crystallization kinetics of PP in the blends was evaluated by Mo's method. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Attapulgite (AT) clay was firstly treated with sodium polyacrylate (PAS), then polyamide 6 (PA6)/AT nanocomposites were prepared by simple melt compounding. Transmission electron microscope (TEM) and Fourier transform infrared spectrometry (FT‐IR) of treated AT confirm the success of purifying and surface modification of the original AT by PAS. X‐ray diffraction spectra for the nanocomposites show that the microstructure of AT in PA6 matrix is almost unchanged. It indicates that a strong interfacial adhesion exists between AT and PA6 matrix through analyzing fracture surfaces of the nanocomposites, the variation of glass transition temperature (Tg) obtained by dynamic mechanical analysis, and interfacial interaction factors; field emission scanning electron microscopy on the fracture surfaces of the nanocomposites shows that a uniform dispersion of AT is obtained. The above two aspects conform to the improvement of mechanical and thermal properties of the nanocomposites. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

15.
Polyamide‐type composites with improved thermal conductivity are prepared by using polyamide 6(PA6)/polyamide 6,6 (PA66) 1:1 blend as the matrix and aluminum nitride (AlN) as the filler through melt compounding. Field emission scanning electron microscopy coupled with energy dispersive spectrometry (EDS) mapping of Al is used to investigate distribution of AlN. Differential scanning calorimeter is used to investigate the crystallization behavior of the composites. The thermal conductivity of PA6/PA66/AlN composite with 50 wt % AlN is 1.5 W m?1 K?1, 88% enhancement compared to those of single polymer based PA6/AlN or PA66/AlN composites. The reason for the improved thermal conductivity is the increased effective volume concentration of AlN in one (probably PA66) phase. The experimental data are fitted into Bruggeman and Agari–Uno model. Composites with similar thermal conductivity are also prepared using silicon carbide as the filler instead of AlN, showing that using PA6/PA66 1:1 blend as the matrix is a universal method to prepare thermally conductive composites with less filler loading. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45371.  相似文献   

16.
Polyamide 6/clay (PA/clay) nanocomposites produced by melt‐compounding were treated under various melt‐state annealing processes. The effect of melt‐state annealing on the microstructure, crystallization, and dynamic mechanical properties was characterized by transmission electron microscope (TEM), modulated differential scanning calorimetry (MDSC), X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and dynamic mechanical analysis (DMA). Clay layers were exfoliated in PA matrix. The crystalline transformation between α and γ‐crystalline phase was virtually dependent on the annealing process and clay loading. After melt‐state annealing between 230 and 250°C, clay induced the appearance of a new endothermic peak in PA/clay. PA/clay after melt‐state annealing exhibited a higher elastic modulus above Tg and a lower β relaxation below Tg as compared with the non‐annealed sample. FTIR analysis demonstrated that the melt‐state annealing caused strong hydrogen bonding interaction of amide groups with clay layers. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

17.
Polyamide 66–thermal liquid crystalline polymer (PA66/TLCP) composites containing 10 wt% TLCP was compatibilized by ethylene–propylene–diene‐grafted maleic anhydride terpolymer (MAH‐g‐EPDM). The blending was performed on a twin‐screw extrusion, followed by an injection molding. The rheological, dynamic mechanical analysis (DMA), thermal, mechanical properties, as well as the morphology and FTIR spectra, of the blends were investigated and discussed. Rheological, DMA, and FTIR spectra results showed that MAH‐g‐EPDM is an effective compatibilizer for PA66/TLCP blends. The mechanical test indicated that the tensile strength, tensile elongation, and the bending strength of the blends were improved with the increase of the content of MAH‐g‐EPDM, which implied that the blends probably have a great frictional shear force, resulting from strong adhesion at the interface between the matrix and the dispersion phase; while the bending modulus was weakened with the increase of MAH‐g‐EPDM content, which is attributed to the development of the crystalline phase of PA66 hampered by adding MAH‐g‐EPDM. POLYM. COMPOS., 27:608–613, 2006. © 2006 Society of Plastics Engineers  相似文献   

18.
Fluorographene (FG) with layer numbers of 3–4 was successfully prepared through facile microwave‐assisted liquid phase exfoliation of raw graphite fluoride (GrF). The raw GrF and the as‐prepared FG were then directly incorporated into polyamide 66 (PA66) by melt processing without using any surfactants. Microstructural, mechanical and tribological properties of the prepared PA66 composites were investigated. Various characterization results showed that both GrF and FG, as novel solid lubricants, can effectively improve the mechanical and anti‐wear performances of the PA66 matrix. It was also found that FG is better at improving mechanical properties and reducing the friction of PA66 than GrF at low concentrations owing to the large surface–volume ratio. The addition of 0.5 wt% FG into PA66 exhibits a ca 13% increase in tensile modulus, ca 5% increase in tensile strength, ca 18% reduction in coefficient of friction (COF) and ca 43% reduction in wear rate. However, at relatively high concentrations, such as 1.0 wt%, GrF shows a better reinforcement effect than FG owing to a uniform dispersion of GrF in the PA66 matrix. The addition of 1.0 wt% GrF into PA66 exhibits a ca 18% increase in tensile modulus, ca 5% increase in tensile strength, ca 37% reduction in COF and ca 46% reduction in wear rate. Wear tests also show that the excellent wear resistance of the PA66 composites is due to the improved mechanical properties and the lubrication of GrF and FG between the worn surfaces. Our current work demonstrates the tremendous potentials of fluorinated carbon materials for enhancing mechanical and anti‐wear properties of polymeric materials. © 2020 Society of Chemical Industry  相似文献   

19.
Composites of Phormium tenax fibers in a poly(lactic acid) matrix with fiber content of up to 40 wt%, produced by injection molding and twin screw compounding, were characterized by scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and mechanical tests (static and dynamic). Thermal analysis showed that cold‐crystallization peak shifted to lower temperatures with increasing fiber content, confirming that the addition of Phormium fiber has the effect of promoting crystallinity. Dynamic mechanical analysis (DMA) results showed that the addition of Phormium fiber did not affect significantly the Tg of the polymer and the area under the tan δ decreased with the addition of Phormium fiber. Tensile modulus has been consistently increased by reinforcing the composite with growing amounts of fibers, whilst the effect on tensile strength is less evident. SEM micrographs of fracture surfaces allowed highlighting failure modes of the composites, which included a diffuse presence of fiber pull‐out and debonding. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

20.
The thermal properties of isotactic polypropylene (iPP) reinforced with polyaniline‐grafted‐short glass fibers (PAn‐g‐SGF) at 10, 20, and 30 wt% concentration and iPP blended with 5 wt% PP‐grafted‐maleic anhydride (PP‐gMA) and 30 wt% of PAn‐g‐SGF were investigated. iPP crystallizes into a spherulitic morphology, the microfiller promoted larger spherulite size and higher dynamic modulus, but the overall degree of crystallinity decreased as the concentration of PAn‐g‐SGF increased. The melting temperature, Tm, was not influenced by the microfiller. However, the crystallization temperature, Tc, as determined by DMA, first decreased reaching a minimum at ca. 20 wt%, and then increased, in contrast with Tc determined by DSC, it increased as concentration increased. The initial reduction in Tc observed by DMA seems to be associated with the crystallites growing from the microfiller into the matrix, the overall molecular dynamics then being less affected. On the other hand, increase in Tc above 20 wt% concentration suggests that the percolation threshold could be responsible for these results. Addition of the maleic anhydride copolymer produced higher shear modulus, transition temperatures, and activation energy, suggesting higher interaction between microfiller and polymer matrix. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号