首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过DSC分析,粘度、介电性能、力学性能及耐油性测试对酚醛型环氧树脂改性氰酸酯树脂复合材料的性能进行了研究。结果表明,改性氰酸酯树体系在70~160℃具有较低的粘度,理想工艺是在125~130℃下30~45min后开始加压;改性氰酸酯树脂表观活化能和反应级数分别为60.81kJ/mol和0.8846。改性氰酸酯复合材料具有良好的力学性能、介电性能和耐油性能。  相似文献   

2.
概述了常见的3种酚醛环氧树脂的特点,着重从结构改性、有机物改性和无机物改性3个方面介绍了近年来酚醛环氧树脂的耐热和增韧改性的研究原理和方法,最后展望了酚醛环氧树脂改性的新方法。  相似文献   

3.
概述了常见的3种酚醛环氧树脂的特点,着重从结构改性、有机物改性和无机物改性3个方面介绍了近年来酚醛环氧树脂的耐热和增韧改性的研究原理和方法,最后展望了酚醛环氧树脂改性的新方法。  相似文献   

4.
A high-toughness epoxy has been prepared using carboxyl-terminated butadiene acrylonitrile (CTBN) as a toughening agent to modify the AG-80 epoxy resin. High-performance carbon fiber/epoxy (CF/EP) composites are fabricated using the CTBN-toughened epoxy resin as the matrix and two types of CF, namely, T800SC and T800HB, as reinforcement. The mechanical properties of the matrix, surface properties of the CFs, tensile properties, and fracture morphologies of the composites are systematically investigated to elucidate the key factors influencing interfacial bonding in high-performance CF/EP composites. The results reveal that the most significant improvement in toughness is achieved when the CTBN content is 6.90 wt.% in the epoxy resin. Owing to the high content of polar functional groups and excellent surface wettability of T800SC, the T800SC/EP composite exhibits superior mechanical properties compared with the T800HB/EP composite.  相似文献   

5.
Multiwall carbon nanotubes (MWNTs) were modified by three methods, namely, oxidizing the tubes and opening both ends, filling the tubes with Ag, and grafting the tubes with hexamethylene diamine. Modified MWNTs/epoxy composites were prepared by melt‐mixing epoxy resin with the tubes. Transmission electron microscope images showed that the modified MWNTs can be dispersed in the epoxy matrix homogeneously. The dielectric behaviors and mechanical properties of the composites were investigated. The dielectric and mechanical properties of the modified MWNTs/epoxy composites were considerably improved compared with those of the epoxy matrix. The tensile strengths of the Ag‐filled, opened, and grafted MWNTs composites at the same filler content of 1.1 wt% were higher by ~30.5%, 35.6%, and 27.4%, respectively, than that of neat epoxy. The Izod notched impact strength of the grafted MWNTs/epoxy composite with filler content of 1.1 wt% was approximately four times higher than that of neat epoxy. A dielectric constant of ~150 of the composite with 1.1 wt% Ag‐filled nanotubes was observed in the low‐frequency range, which was ~40 times higher than that of the epoxy matrix. The proper modification of nanotubes provides a way to improve the properties of the polymer‐based composites. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

6.
This article investigated the effect of moisture on the tensile strength and in‐plane shear of laminated composites. For this, the results of a composite system based on a new thermoplastic Elium® 150 resin were compared to a traditional epoxy resin result. Both composites were fabricated via VARTM using a 0/90° plain weave carbon fiber fabric. For the non‐conditioned specimens, the thermoplastic composites presented 30% more tensile resistance in comparison to epoxy composites. For conditioned specimens, this difference was 14%. These results were related to plasticization, which tends to favor the polymer softening providing a greater matrix plastic deformation, promoting a ductile fracture of the composite. On the other hand, the in‐plane shear properties were 30% higher for the thermosetting laminates for both conditions. In this case, moisture may have favored the formation of surface cracks and weakened the fiber/matrix interfacial adhesion. Additional analysis based on design of experiments has shown that the Elium® 150 resin significantly affects all responses and presented in fact a better behavior in comparison to Epoxy resin. While the conditioning effects have featured a statistically noticeable contribution to the tensile strength, the presence of the moisture did not provide a significant enhancement to the in‐plane shear strength. Besides that, the unknown fractographic aspects of the fracture surfaces of both composites were used as a complementary tool for the mechanical characterization. POLYM. ENG. SCI., 59:2185–2194, 2019. © 2019 Society of Plastics Engineers  相似文献   

7.
Jin Ah Kim 《Carbon》2006,44(10):1898-1905
Despite superior properties of carbon nanotubes (CNTs), physical properties of the CNT/epoxy composites are not improved significantly because interfacial bonding between the CNTs and the polymer matrix is weak. CNTs were treated by an acidic solution to remove impurities and modified subsequently by amine treatment or plasma oxidation to improve interfacial bonding and dispersion of nanotubes in the epoxy matrix. The functional groups on the surface of treated CNTs were investigated by X-ray photoelectron spectroscopy. The surface modified CNTs were embedded in the epoxy resin by ultra-sonication and the cured nanotube containing composites were characterized by field emission scanning electron microscopy. Rheological properties of nanotube containing epoxy resin and mechanical properties of the modified CNT/epoxy composites were improved because the modification of CNTs improved dispersion and interaction between the CNT and the epoxy resin.  相似文献   

8.
Pre-impregnated carbon fiber/epoxy resin (CF/epoxy prepreg) gained its popularity for significant stress applications, especially in the aerospace industry, owing to its excellent resistance and low specific mass. However, these CF/epoxy prepregs have a tendency to crack propagation. A solution for the prepregs fragility is the addition of carbon nanotubes (CNTs), especially those functionalized with amino groups, reinforcing the material due to its exceptional mechanical properties. In this work, the influence of the carbon chain length of two different amino-functionalized CNTs from diverse backgrounds (commercial and laboratory growth CNTs) is studied. The nanofillers were added in CF/epoxy prepregs by dry spraying without solvent aid. CNTs' samples were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and thermogravimetric analysis (TGA), while the composites were analyzed by TGA, dynamic-mechanical analysis, and field emission scanning electron microscopy. The various surface treatment occurred at different levels according to the CNTs background, and all samples exhibited a distinct behavior. These differences were also observed in the composites' thermomechanical performance: CNTs functionalized with larger carbon chain amine presented the best results, with an increase of almost 100% in the storage moduli (E'), confirming the efficiency of amino-functionalized CNTs in the reinforcement of CF/epoxy prepregs.  相似文献   

9.
A study was carried out to investigate the effect of plasma modification on the mechanical properties of carbon fiber/phenolphthalein polyaryletherketone composites. The influence of oxygen plasma treatment on the surface properties of carbon fibers was investigated by X‐ray photoelectron spectroscopy and atomic force microscopy. The results indicated that oxygen plasma treatment was capable of increasing the concentrations of the oxygen‐containing groups of the carbon fiber surface as well as enhancing surface roughness. Both the chemical bonding and mechanical interlocking gave rise to an increase of the interlaminar shear strength of composite. Scanning electron microscope photographs showed that the destruction mode of composites was changed after the carbon fibers were treated by oxygen plasma. The results also indicated that the flexural properties of plasma‐treated carbon fiber composites were improved. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

10.
王翔  杨小利  谢芸琪  王钧 《粘接》2003,24(5):7-9
研究铜电极与碳纤维/环氧复合材料的粘接工艺,比较铜的表面处理方法对于粘接强度和导电性的影响,并验证粘接的可靠性.首先分别用机械打磨、化学表面处理、表面电镀方法对铜片进行处理,然后通过铜粉导电胶与碳纤维/环氧复合材料粘接,测试粘接强度及电阻率,再通过湿热老化实验,对粘接的可靠性进行比较.测试结果表明,经化学表面处理的铜片与碳纤维/环氧复合材料粘接强度达到1.34 MPa,老化后强度保留率为76%;电阻率为4.19 Ω*m,老化后电阻率增加率为4.8%.从而确定化学表面处理方法得到的粘接强度和导电效果较佳.  相似文献   

11.
利用微脱黏法测定碳纤维/环氧树脂复合材料的界面剪切强度,并分析了造成测试结果分散的影响因素.结果表明:在脱黏过程中,最大脱黏力随碳纤维埋人环氧树脂内长度的增加而线性递增,当埋人长度超过一定值后最大脱黏力趋于稳定:碳纤维与环氧树脂间的接触角对复合材料界面剪切强度有一定影响,接触角越大,界面剪切强度越高;测试结果的分散性与树脂微球的半月板区域、钳口区等因素有关;未经表面处理的碳纤维增强环氧树脂复合材料的界面剪切强度仪为39.4 MPa,低于处理后的复合材料(60.6 MPa).  相似文献   

12.
Short carbon fiber‐reinforced composites (SCFRCs) have attracted increasing attention owing to their comprehensive performance and easy processing route. However, the imperfect interfacial adhesion and serious stress concentration at the fiber/matrix interface have hampered their engineering application. In this article, we first report the preparation of SCFRC modified by a low‐viscosity liquid hyperbranched epoxy resin (Hyper E102). We then investigated the effect of Hyper E102 content on thermal and mechanical properties. The results show that the overall performance of the SCFRC first increases and then decreases with the increasing content of Hyper E102. With the incorporation of 12 phr Hyper E102, the tensile strength, fracture toughness, notched, and unnotched impact strength of SCFRC were increased by 16.7, 74.9, 95.3, and 194.5%, respectively. The toughening and reinforcing mechanisms were attributed to the following three aspects. First, the Hyper E102 improves the impregnation property of epoxy matrix against fibers, which helps form a better interfacial adhesion. Second, the incorporation of Hyper E102 reduces the internal stress level and stress concentration of the SCFRC. Finally, the critical crack length inside the SCFRC can be remarkably increased with the incorporation of Hyper E102, which can enhance the damage tolerance of a composite. POLYM. COMPOS., 37:2727–2733, 2016. © 2015 Society of Plastics Engineers  相似文献   

13.
改性空心玻璃微珠/环氧树脂复合材料力学性能研究   总被引:3,自引:2,他引:3  
采用偶联剂对玻璃微珠表面进行改性处理,借助超声波振动,使改性空心玻璃微珠在环氧树脂中均匀、稳定分散,增强了玻璃微珠与环氧树脂之间的相容并探讨了改性空心玻璃微珠对环氧树脂力学性能的影响。结果表明,复合材料中改性空心玻璃微珠添加质量分数为3%时,其拉伸强度达到最大值68.54 MPa,与空白样相比提高了20.3%;冲击强度达到最大值24.42 kJ/m2,比纯环氧树脂提高了166%;KIC(断裂韧性)达到最大值2.338 MPa/m2,是空白试样的2.27倍,增韧效果较为明显。  相似文献   

14.
采用直接分散法和上浆剂法分别制备了环氧树脂/碳纤维复丝,通过红外光谱、分光光度法等分析方法对处理的石墨烯的表面官能团及表面形貌进行表征,借助扫描电子显微镜对碳纤维表面进行微观形貌观察,研究了石墨烯改性对环氧树脂/碳纤维复丝界面性能的影响。结果表明:石墨烯表面成功地接枝了硅烷偶联剂KH-560;接枝硅烷偶联剂KH-560的石墨烯的环氧树脂/碳纤维复丝的拉伸性能优于未经改性的石墨烯的复丝;上浆法制得的环氧树脂/碳纤维复丝的拉伸性能优于分散法制得的复丝的拉伸性能;上浆剂法制备的石墨烯改性的环氧树脂/碳纤维复丝的断裂强力比未经过改性的未上浆的复丝的提高了48.6%,拉伸强度提高了30.4%,断裂伸长率提高了90.9%。  相似文献   

15.
Carboxylated-terminated liquid acrylonitrile rubber (CTBN) and epoxy resin (JEF-0211) were coreacted with cyanate ester (CE) to form CTBN/EP/CE ternary resin systems. Further, the ternary resin system was applied as prepreg for carbon fiber composites with vacuum bag degassing molding process. CTBN/EP/CE ternary shape memory polymer (SMP) exhibited relatively high tensile strength, Young's modulus, impact strength, and excellent shape memory properties. Compared with CTBN/EP/CE ternary SMP, CTBN/EP/CE carbon fiber composites showed much higher mechanical properties, such as their tensile strength and Young's modulus were high to 570 MPa and 36.7 GPa, respectively. Furthermore, CTBN/EP/CE carbon fiber composites exhibited good shape memory properties, their shape fixity ratio and shape recovery ratio were more than 95% after 30 times repeating shape memory tests. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48756.  相似文献   

16.
A series of self‐emulsified waterborne epoxy resin (WEP) emulsions were used as surface sizing for carbon fibers (CFs) to improve the interfacial adhesion between the CF and epoxy matrix. In this work, the hydrogenated bisphenol‐A epoxy resin (HBPAE) was modified by polyethylene glycol (PEG) with molecular weights of 400, 800, 1000, 1500, 2000, 4000, and 6000 g/mol. The properties of the WEP emulsion were examined by Fourier transform infrared spectroscopy, dynamic light scattering, and transmission electron microscopy. The surface characteristics of sized CFs were evaluated using scanning electron microscopy, atomic force microscopy, and X‐ray photoelectron spectroscopy. Afterwards, CF/EP composites were prepared and their fracture surface and interlaminar shear strength (ILSS) were examined. The results indicated that PEG2000 modified HBPAE sizing had the optimum emulsion stability and film‐forming ability. Meanwhile, the results also demonstrated that a continuous and uniform sizing layer was formed on the surface of CFs and the surface sizing was excellent in improving the chemical activity of CFs. Compared with unsized CFs, the O1s/C1s composition ratio was observed to increase from 11.51% to 33.17% and the ILSS of CF/EP composites increased from 81.2 to 89.7 MPa, exhibiting better mechanical property than that of commercial Takemoto S64 sized CFs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44757.  相似文献   

17.
18.
A suitable dispersion technique and quantitative evaluation of degree of dispersion of carbon nanotubes (CNT) in any solvent and matrix system has been one of the key issues for achieving enhanced performance of CNT reinforced composites. We report the use of UV–vis spectroscopy as a useful technique to ascertain the degree of dispersion of multiwalled carbon nanotubes (MWCNT) in the epoxy resin. The study has enabled to maximize dispersion of MWCNT in the epoxy resin using two different routes. As a result the composite samples prepared with only 0.3 wt.% amine functionalized MWCNT showed flexural strength of 140 MPa over the neat resin value of 55 MPa, an improvement of ~155% which is maximum reported so far for CNT-epoxy isotropic composites.  相似文献   

19.
A 53% (vol.) chopped carbon fiber (2.5 cm long) in resin composite was molded under uniaxial extensional deformation conditions (for a charge draw ratio (DR) of 1, 2, 4, and 8) to produce flat panels 4 mm thick. Axial direction tensile strength increased by 42% from DR 1 to 2 and rose slightly at higher DR, while a slight increase occurred for the transverse direction values over the whole range. Axial direction thermal conductivity (t.c.) increased 32% from DR 1 to 2 then, decreased at DR 4 and DR 8, while normal t.c. showed a moderate decrease and transverse t.c. showed no definite trend. Measurements of the Hermanns fiber orientation function in the core of the samples showed a gradual increase from 0.3 to 0.45 (with respect to draw direction) while surface values ranged from about 0.08–0.15 over the range of DR. Results for a 30% (vol.) carbon fiber (6.5 mm long) composite showed similar trends. A flow analysis based on the power law model indicates that surface shear effects tend to rotate fibers in the surface region out of the plane of the panel. This limits the axial t.c. and tensile strength at high DR for the 30% composite, while the decrease in axial t.c. at high DR is caused by orientation of the 3rd phase (filler) for the 53% composite. Results show that the nondestructive nature of the t.c. measurements described allows an indirect measure of tensile strength for molded components in service. POLYM. COMPOS., 26:684–688, 2005. © 2005 Society of Plastics Engineers  相似文献   

20.
《Polymer Composites》2017,38(1):116-125
A functionalization process with dopamine on multiwalled carbon nanotubes (MWNTs) has been carried out in order to enhance the tribological properties of MWNTs/epoxy resin (EP) composites. Dopamine modification is of signality for the performance of MWNTs/EP composites. The hardness and flexural strength of the composites were significantly improved with the incorporation of dopamine modified MWNTs, owning to the enhanced interfacial bonding between MWNTs and EP. Meanwhile, the thermal characterizations indicated that dopamine played an important role in improving the thermal stability of MWNTs/EP composites. More importantly, the friction and wear properties of dopamine modified MWNTs/EP composites were enhanced considerably and its wear rate was 85.8% lower than that of pure EP. Dopamine modified MWNTs were linked with the matrix by strong covalent bond to form a great network structure and impeded the movement of polymer molecule chains in the composites. Then the friction load transmitted efficiently through the network structure and the plastic deformation was restrained as well as the initiation and growth of cracks on the worn surfaces. POLYM. COMPOS., 38:116–125, 2017. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号