首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Hybrid varieties can provide the boost needed to increase stagnant wheat yields through heterosis. The lack of an efficient hybridization system, which can lower the cost of goods of hybrid seed production, has been a major impediment to commercialization of hybrid wheat varieties. In this review, we discuss the progress made in characterization of nuclear genetic male sterility (NGMS) in wheat and its advantages over two widely referenced hybridization systems, i.e., chemical hybridizing agents (CHAs) and cytoplasmic male sterility (CMS). We have characterized four wheat genes, i.e., Ms1, Ms5, TaMs26 and TaMs45, that sporophytically contribute to male fertility and yield recessive male sterility when mutated. While Ms1 and Ms5 are Triticeae specific genes, analysis of TaMs26 and TaMs45 demonstrated conservation of function across plant species. The main features of each of these genes is discussed with respect to the functional contribution of three sub-genomes and requirements for complementation of their respective mutants. Three seed production systems based on three genes, MS1, TaMS26 and TaMS45, were developed and a proof of concept was demonstrated for each system. The Tams26 and ms1 mutants were maintained through a TDNA cassette in a Seed Production Technology-like system, whereas Tams45 male sterility was maintained through creation of a telosome addition line. These genes represent different options for hybridization systems utilizing NGMS in wheat, which can potentially be utilized for commercial-scale hybrid seed production.  相似文献   

5.
6.
7.
8.
9.
10.
Methionine restriction reduces animal lipid deposition. However, the molecular mechanism underlying how the body reacts to the condition and regulates lipid metabolism remains unknown. In this study, a feeding trial was performed on rice field eel Monopterus albus with six isonitrogenous and isoenergetic feeds that included different levels of methionine (0, 2, 4, 6, 8, and 10 g/kg). Compared with M0 (0 g/kg), the crude lipid and crude protein of M. albus increased markedly in M8 (8 g/kg) (p < 0.05), serum (total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and non-esterified free fatty acids), and hepatic contents (hepatic lipase, apolipoprotein-A, fatty acid synthetase, total cholesterol, triglyceride, and lipoprteinlipase). However, in the serum, very-low-density lipoprotein and hepatic contents (hormone-sensitive triglyceride lipase, Acetyl CoA carboxylase, carnitine palmitoyltransterase, and mirosomal triglygeride transfer protein) decreased markedly in M8 (p < 0.05). The contents of hepatic C18:2n-6, C22:6n-3, and n-3PUFA in the M8 group were significantly higher than those in M0 (p < 0.05), and the contents of lipid droplets in M8 were higher than those in M0. Compared with M0, the hepatic gcn2, eif2α, hsl, mttp, ldlrap, pparα, cpt1, and cpt2 were remarkably downregulated in M8, while srebf2, lpl, moat2, dgat2, hdlbp, srebf1, fas, fads2, me1, pfae, and icdh were markedly upregulated in M8. Moreover, hepatic SREBP1 and FAS protein expression were upregulated significantly in M8 (p < 0.01). In short, methionine restriction decreased the lipid deposition of M. albus, especially for hepatic lipid deposition, and mainly downregulated hepatic fatty acid metabolism. Besides, gcn2 could be activated under methionine restriction.  相似文献   

11.
12.
13.
14.
15.
16.
17.
The development of thermosensitive genic male sterile (TGMS) lines is the key to breeding two-line hybrid rice, which has been widely applied in China to increase grain yield. CRISPR/Cas9 has been widely used in genome editing to create novel mutants in rice. In the present study, a super grain quality line, GXU 47, was used to generate a new TGMS line with specific mutations in a major TGMS gene tms5 generated with CRISPR/Cas9-mediated genome editing in order to improve the rice quality of two-line hybrids. A mutagenesis efficiency level of 75% was achieved, and three homozygous T-DNA-free mutant lines were screened out. The mutants exhibited excellent thermosensitive male fertility transformation characteristics with complete male sterility at ≥24 °C and desirable male fertility at around 21 °C. Proteomic analysis based on isobaric tags for relative and absolute quantification (iTRAQ) was performed to unveil the subsequent proteomic changes. A total of 192 differentially expressed proteins (DEPs), including 35 upregulated and 157 downregulated, were found. Gene ontology (GO) analysis revealed that the DEPs were involved in a single-organism biosynthetic process, a single-organism metabolic process, oxidoreductase activity, and catalytic activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEPs were involved in ubiquinone and other terpenoid quinone biosynthesis, the biosynthesis of secondary metabolites, metabolic pathways, and phenylpropanoid biosynthesis. Our study shows that high mutation efficiency was achieved in both target sites, and T-DNA-free mutant lines were obtained in the T1 generation. The present study results prove that it is feasible and efficient to generate an excellent mutant line with CRISPR/Cas9, which provides a novel molecular mechanism of male sterility caused by the mutation of tms5.  相似文献   

18.
19.
20.
Several health benefits are obtained from resistant starch, also known as healthy starch. Enhancing resistant starch with genetic modification has huge commercial importance. The variation of resistant starch content is narrow in wheat, in relation to which limited improvement has been attained. Hence, there is a need to produce a wheat population that has a wide range of variations in resistant starch content. In the present study, stable mutants were screened that showed significant variation in the resistant starch content. A megazyme kit was used for measuring the resistant starch content, digestible starch, and total starch. The analysis of variance showed a significant difference in the mutant population for resistant starch. Furthermore, four diverse mutant lines for resistant starch content were used to study the quantitative expression patterns of 21 starch metabolic pathway genes; and to evaluate the candidate genes for resistant starch biosynthesis. The expression pattern of 21 starch metabolic pathway genes in two diverse mutant lines showed a higher expression of key genes regulating resistant starch biosynthesis (GBSSI and their isoforms) in the high resistant starch mutant lines, in comparison to the parent variety (J411). The expression of SBEs genes was higher in the low resistant starch mutants. The other three candidate genes showed overexpression (BMY, Pho1, Pho2) and four had reduced (SSIII, SBEI, SBEIII, ISA3) expression in high resistant starch mutants. The overexpression of AMY and ISA1 in the high resistant starch mutant line JE0146 may be due to missense mutations in these genes. Similarly, there was a stop_gained mutation for PHO2; it also showed overexpression. In addition, the gene expression analysis of 21 starch metabolizing genes in four different mutants (low and high resistant starch mutants) shows that in addition to the important genes, several other genes (phosphorylase, isoamylases) may be involved and contribute to the biosynthesis of resistant starch. There is a need to do further study about these new genes, which are responsible for the fluctuation of resistant starch in the mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号