首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
袁骧  罗大军  岳留威 《炼铁》2021,40(1):15-20
对湘钢2号高炉进行了破损调查研究,计算了炉缸侧壁炭砖残余厚度、死铁层深度和死料柱漂浮高度,同时测量了炉缸炭砖剩余厚度.研究结果表明,2号高炉死铁层深度为1.0 ~1.8m,远小于设计值,死料柱透液性变差,铁水环流进一步加剧,导致铁口区域炉缸侧壁侵蚀相当严重;3个铁口下方0.5 ~1.5m炭砖最薄处剩余厚度110mm,且...  相似文献   

2.
在实验室条件下,考察了不同铁水温度下、炭砖和焦炭同时作为渗碳碳源时,炭砖的侵蚀速率和焦炭的溶解速率及炭砖微观结构的变化。结果表明:在实验范围内,随着铁水温度升高,炭砖侵蚀速率和焦炭溶解速率加快,且焦炭的溶解速率远大于炭砖坩埚的侵蚀速率,说明铁液更易与焦炭发生渗碳反应;侵蚀后的炭砖分层明显,并且有清晰的铁液渗透通道。由此得出,在高炉实际生产中,添加渗碳性能好的焦炭以及定期更新炉缸内死料柱可在一定程度上缓解铁液对炉缸炭砖的侵蚀,从而实现高炉长寿。  相似文献   

3.
焦克新  张建良  刘征建  杨天钧 《钢铁》2020,55(8):193-198
 高炉长寿化是大型高炉发展的必然趋势,实现高炉长寿的关键在于弄清高炉侵蚀的根本原因。从高炉炉缸侵蚀机理、高炉炉缸象脚型侵蚀原因、高炉炉缸圆周方向侵蚀不均匀性、高炉冷却强度与冷却效率以及高炉炉缸维护技术等5个方面探讨了高炉长寿存在的共性问题,指出高炉炉缸炭砖损毁的本质是碳不饱和铁水对炭砖的溶蚀。具体结果表明,首先,高炉炉缸象脚型侵蚀最严重部位位于高炉炉缸死料柱的根部位置;其次,阐明了直接导致高炉存在不均匀侵蚀的主要原因在于冷却系统的冷却水量和送风系统的风量在高炉周向方向分配不均匀;然后,阐明了冷却系统的作用本质是降低耐火材料热面温度,并提出了高炉冷却强度指数及高炉冷却效率指数;最后,分析了采用无钛矿护炉和钛矿护炉两种模式的高炉炉缸维护技术。  相似文献   

4.
高炉炉缸死料柱的形貌尺寸、沉浮状态、空隙度及焦炭粒度粒级时刻影响着炉缸液态炉渣和铁水的流动情况,进一步影响着铁水对炉缸侧壁的冲刷侵蚀程度和炉缸活性。基于莱钢3号3 200 m3高炉的破损调查研究得到炉缸整体呈现“锅底状”侵蚀特征,其中炉缸侧壁的侵蚀程度较小、仍残余较为完整的炭砖结构,部分区域还保留少量的陶瓷杯结构,炉底陶瓷垫已被侵蚀完全至第3层超微孔炭砖。通过对炉缸死铁层残铁积存物的切割解体,并结合综合图像处理技术对炉缸死料柱进行分析。结果发现,死料柱根部为“圆弧状”并在炉缸中呈现明显的漂浮状态,高度约为0.45~1.34 m,死料柱直径约为10.01 m,占侵蚀后炉缸直径的71.91%,体积较小有利于浮起,同时降低铁水的环流现象对侧壁耐火材料的冲刷侵蚀。死料柱周围含有一段长度约为1.0 m的铁水通道,通过计算得到此区域铁水的对流换热系数较小,约为52.61 W/(m2·K),这说明铁水流速小,而使得耐火材料所承受的热应力小,可大幅度减缓炉缸炉衬的侵蚀速率。死料柱平均空隙度和焦炭平均粒度分别为54.57%和22.89 mm,较大的死料柱空隙度...  相似文献   

5.
鞍钢2号高炉炉缸炉底炭砖蚀损调查及分析   总被引:1,自引:0,他引:1  
王德民  施月循 《炼铁》1995,14(4):12-14
鞍钢2号高炉停炉破损调查表明,炉缸炭砖环裂严重,炉底炉缸异常侵蚀十分明显。经初步分析认为,热应力是引起炭砖产生环裂的主要因素,死铁层太浅,铁水环流剧烈是形成异常侵蚀的主要原因。  相似文献   

6.
为了探析高炉炉缸侵蚀特征及其共性原因,基于京唐1号高炉和通才3号高炉的现场数据,分别计算了炉缸侧壁炭砖残余厚度和死料柱漂浮高度,明确了炉缸炭砖的侵蚀原因,证实了炉缸炭砖的侵蚀部位。结果表明,当死料柱透气性变差时,炉底温度逐渐降低,铁水环流加重,造成了耐火材料的异常侵蚀;由京唐1号高炉死料柱根部位置和炭砖侵蚀位置的关系,证实了死料柱根部对应炭砖易受到异常侵蚀,即铁口中心线下方1~3 m。由于死料柱物理状态和漂浮状态随生产参数和高炉状态的变化而变化,因此侵蚀部位也随之变化,故应稳定原燃料条件及生产参数,并建立死料柱漂浮高度和炭砖残余厚度的实时监测机制,从而保证高炉安全生产,实现高炉长寿。  相似文献   

7.
《炼铁》2016,(4)
对鞍钢不同炉役阶段高炉炉缸炭砖选型、砌筑情况进行了阐述,分析了不同类型炭砖高炉炉内使用效果和侵蚀状况。从炉缸炭砖破损的状况来看,渗铁、铁水溶蚀及冲刷、裂纹现象、锌及碱金属侵蚀等,是鞍钢高炉炉缸炭砖破损的主要原因。依据鞍钢多座高炉成功的生产经验,认为合理选用炭砖型号、严格监管砌筑质量、控制有害元素入炉、减少炉况波动等,是延长炉缸炭砖使用寿命的关键。  相似文献   

8.
邓勇  刘然  刘小杰  李澳淼  李涛 《钢铁》2020,55(8):175-180
 为了延缓炉缸炭砖侵蚀,基于炉缸破损调查试样分析和试验结果,研究了炉缸炭砖侵蚀过程,提出了基于层次分析理论(analytic hierarchy process,AHP)的界面反应综合调控技术。结果表明,炭砖侵蚀经历3个过程:铁水润湿炭砖、铁水渗透炭砖和铁水溶解炭砖。非稳态下铁水对炭砖的润湿作用使界面迅速由气-固界面转变为液-固界面;铁水渗透在炭砖微晶结构的作用下呈现出树枝状特征,且渗透面积越大、渗透延展度越高,炭砖脆化现象就越明显;在铁水碳欠饱和度的作用下,脆化的炭砖易溶解进入铁水中,导致炭砖被侵蚀。基于AHP的界面反应综合调控技术可帮助高炉操作者明确调控方向和调控重点措施,应从铁水成分调控和炭砖性能调控的几个关键技术采取措施以延长炉缸寿命。  相似文献   

9.
对包钢5号高炉炉缸破损调查结果进行了分析,并对炉缸长寿技术提出了建议。破损调查结果表明,5号高炉炉缸整体出现了"象脚形"侵蚀,铁口区域以及铁口夹角之间侵蚀最为严重,最薄处炭砖厚度为160mm,侵蚀率为88.15%。认为5号高炉炉缸破损的原因,主要是碱金属、锌及死铁层深度等因素的影响。为实现炉缸长寿,建议加强入炉碱金属负荷、锌负荷的合理控制;在后期的改造设计中,应减小死铁层深度,尽量将铁口的夹角确定在合理的范围之内。  相似文献   

10.
结合首钢股份1号高炉炉缸破损调查结果,从有害元素、焦炭质量、铁水含碳饱和度、死料柱及炉役后期频繁停炉的影响等方面,对炉缸侵蚀原因进行了剖析.破损调查结果表明,炉缸呈现出“象脚形”侵蚀,最为严重的侵蚀部位在铁口中心线下方2.1~2.4m之间,侵蚀最严重部位炭砖残余厚度330 mm,位于25号风口下方.认为炉役后期死铁层加...  相似文献   

11.
1 000m~3高炉炉缸下部及底部呈"圆锅底"型侵蚀,实际炉缸直径变大,炉底加深。缸炉底炭砖破坏的主要原因是K_2O、Na_2O和Zn的化学性侵蚀和铁水的浸入式侵蚀。为减缓炉缸和炉底炭砖侵蚀,建议改善显气孔率、抗碱侵蚀能力和抗铁水溶蚀性。  相似文献   

12.
为了延缓炉缸炭砖侵蚀,分析了炉缸铁水硫含量变化趋势,研究了硫元素加速炉缸炭砖侵蚀机理,提出了现代大型高炉脱硫技术措施。结果表明:高炉-铁水预处理联合脱硫、使用高比例球团是炉缸铁水硫含量升高的主要原因;炉缸炭砖与碳含量欠饱和的铁水接触是炭砖侵蚀的直接原因,硫含量升高使铁水表面张力下降、黏度下降,提高了界面反应速率,增大了铁水中碳的传质系数,加速了炭砖侵蚀。在低渣比条件下,控制炉渣碱度在1.12~1.18,MgO含量在9%~12%,Al2O3含量在13.5%~15.5%,并提高铁水中碳、硅、磷元素含量,降低锰、钛元素含量,采用控制炉渣成分和铁水成分的协同脱硫技术,是现代大型高炉脱硫的有效措施。  相似文献   

13.
为探究沙钢3号高炉炉缸侧壁温度升高原因,对沙钢3号高炉开炉以来的热电偶温度数据及热流强度变化趋势进行统计,并计算了炭砖的残余厚度.结合3号高炉的死铁层深度及冷却系统设计等参数,对炉缸侧壁温度升高的原因进行了解析.结果表明,沙钢3号高炉炭砖侵蚀薄弱区域处于铁口下方1?2 m,最薄位置处于西铁口,炭砖残余厚度约为517 m...  相似文献   

14.
唐文华  肖国梁  胡峻峰  刘佳  尹凯 《炼铁》2023,(3):24-27+32
衡钢1号高炉大修投产后不到2年,炉缸个别点温度最高上升到900℃左右,危及安全生产,被迫停炉中修。停炉后观察发现,炉缸炉底呈“象脚状”侵蚀,炉缸第1层炭砖侵蚀严重,最薄弱处炭砖残余厚度仅240mm,从残铁口扒渣门两边炉缸第7~9层炭砖中部可见明显的环裂缝。认为1号高炉炉缸炭砖侵蚀过快的原因主要是:(1)高冶炼强度操作,且炉缸直径偏小,致使炉缸铁水环流强;(2)炉缸炉底耐材部分指标不达标;(3)炭砖冷面与冷却壁之间的炭素捣打料层存在气隙;(4)Pb、Zn及碱金属等有害元素控制不力;(5)铁口深度合格率低。  相似文献   

15.
首钢迁钢2号高炉开炉2年后炉缸便发生水温差异常升高现象,长期被迫加钛护炉,控制冶炼强度。研究炭砖的侵蚀是探索炉缸侵蚀的关键。通过化学成分分析、SEM和EDS等手段,研究2号高炉炉缸炭砖异常侵蚀状态和机理。结果表明,13号风口下方象脚区炭砖主要受铁、钾、硫等侵蚀,其中铁的侵蚀深度最深;20号风口下方象脚区炭砖除受铁、钾和硫侵蚀外,受锌侵蚀也较为严重,但锌的侵蚀深度小于铁、钾和硫的侵蚀深度;出铁口区炭砖主要受锌和硫侵蚀,该区炭砖附近存在串气现象,炭砖表层有裂纹,裂纹处主要为锌和硫。炭砖芯部存在混料不均现象,其将导致碳砖随着炉缸温度和压力的变化而产生裂纹。  相似文献   

16.
《炼铁》2015,(5)
结合国内外一些高炉炉缸烧穿的实例,对延长高炉炉缸寿命结构上的一些问题提出了探讨。对于炉缸炉壳结构,建议凡新建或大修高炉,炉壳收缩变径至少应从炉底满铺炭砖中上部开始采取收缩,风口段有一段直段后至炉腹处再扩径,如果风口段砖衬太薄又易烧坏炉腹冷却壁冷面水管。对于炉缸炭砖砖衬结构,一是,炭砖厚度应保证有一定的厚度;二是,大块炭砖砌筑的炉缸环炭应消除水平通缝;三是,坚持好传热的顺序;四是,高度关注炭捣料的材质与施工质量。对于冷却水与冷却器结构,水质和冷却比表积应满足高炉冷却要求,以及水速和水量应同时匹配。对于死铁层深度,认为死铁层深度为炉缸直径20%,不宜继续加深。  相似文献   

17.
高炉炉缸形成"蒜头状"侵蚀的分析和对策   总被引:4,自引:3,他引:4  
周有德 《钢铁》1998,33(2):4-6
高炉炉缸死铁层部位形成“蒜头状”侵蚀是影响高炉炉缸寿命的关键。形成“蒜头状”侵蚀的原因是炉缸失层部位没有持久的渣皮以及砖抗铁水蚀能力差;对策主要是在碳砖砌体热面增加保护层和改善碳砖的有关性能。  相似文献   

18.
介绍了3种典型炉缸结构的特点及在我国高炉的应用效果;对合理死铁层深度进行了分析,并介绍了近年世界上新建的部分高炉的死铁层深度及死铁层深度与炉缸直径之比。介绍了目前已获得应用的炉缸状态监测技术,以及实践证明较好的炉缸缝隙压浆和护炉新技术。指出强化冶炼情况下,炉缸死铁层深度应至少为炉缸直径的20%;炉缸出现缝隙时,用重油压浆比用碳糊效果好;如能开发出含钛化物的炭砖,既能起到较好护炉作用,又不会像添加含钛矿那样会造成焦比升高。  相似文献   

19.
《炼铁》2016,(3)
在湘钢1号高炉停炉大修过程中,对炉缸进行了侵蚀测量和自上而下取样分析,重点对炉缸炭砖热面黏结物的物相组成和炭砖脆化层的形成机理进行分析。结果表明:炉缸自上而下的黏结物中都有锌、碱金属等有害元素存在,锌在铁口以上主要以鳞片状形式黏附在黏结物上,对炉缸炭砖具有一定的保护作用,而在铁口以下主要是通过铁水侵入炭砖空隙,在炭砖内膨胀破坏炭砖结构;炭砖脆化层的产生,主要是由铁水渗入、有害元素侵蚀和热应力破坏共同作用的结果 。  相似文献   

20.
影响高炉炉底炉缸炭砖使用寿命的因素   总被引:6,自引:1,他引:6  
程坤明  J 《炼铁》2006,25(1):11-15
对影响高炉炉底、炉缸炭砖使用寿命的因素进行了分析,认为作为长寿高炉炉底、炉缸炭砖必须具备高抗热应力、高抗碱金属侵蚀、高抗CO分解侵蚀、高抗铁水渗透、高抗氧化性能以及高抗铁水溶蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号