首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研究了在以TiO2为基础的甲烷氧化偶联催化剂中添加Li、La、Mn、W等对催化剂性能的影响。并用XRD测定了不同添加物的催化剂结构,结合催化剂活性,探讨了可能的活性相。结果表明,不同的添加物对甲烷氧化偶联制C2烃催化剂的活性有很大的影响,主要表现在甲烷的转化率,生成C2烃的选择性明显不同。实验结果还表明,Li-La-Mn-W/TiO25组分体系具有很好的活性和C2烃选择性,可能的活性物相是(Mn2O3)80B、Mn5O8、La(OH)3或La2O3。  相似文献   

2.
氧化钾在K_2O-Cr_2O_3/Al_2O_3脱氢催化剂中的作用   总被引:3,自引:0,他引:3  
研究了在Cr2O3/Al2O3中添加K2O对异丁烷催化脱氢反应的影响。实验结果表明,K2O的加入可使催化剂活性和选择性得到明显提高。K2O的作用除了增加脱氢中心Cr3+的浓度外,还使反应历程发生了改变,从而抑制了裂解和芳构化副反应的发生,提高了异丁烯的选择性。  相似文献   

3.
研究了在Cr2O3/Al2O3中添加K2O对异丁烷催化脱氢反应的影响。实验结果表明,K2O的加入可使催化剂活性和选择性得到明显提高。K2O的作用除了增加脱氢中心Cr3+的浓度外,还使反应历程发生了改变,从而抑制了裂解和芳构化副反应的发生,提高了异丁烯的选择性。  相似文献   

4.
用Cu(NO3)2对载体(γ-Al2O3)表面修饰后制成的负载型双金属铜促进催化剂进行了CO加氢反应研究。与未促进催化剂对比,铜助剂对生成低碳烃和提高CO转化率均有较强的促进作用。在280℃时,铜促进催化剂对生成低碳烃的选择性可达59.4%,突破了Schulz-Flory产物分布规律的限制。同时,还研究了铜促进催化剂的活性和选择性随反应温度、时间的变化规律。等离子发射光谱(ICP)对铜促进催化剂的表征结果显示,铜促进催化剂有较高的金属(Fe+Co)负载量。  相似文献   

5.
CO2加氢制低碳烯烃的Fe/Silicalite—2催化剂研究   总被引:12,自引:3,他引:9  
K-Fe-MnO/Si-2催化剂具有较佳的C2氢合成低碳烯烃性能,并随碱金属钾助剂的添加而明显改善,其C2氢反应具有(1)CO2+H2--C+H2O和(2)CO+m/2n+1)H2-1/nCnHm+H2O两小反应机理;应用该反应机理,解释了CO2/H2比、反应温度、板应压力、反应气空速等对K-Fe-MnO/SI-2催化剂CO2加氢反应性能的影响;探讨了催化剂中K2O助剂的作用。  相似文献   

6.
K-Fe-MnO/Si-2催化剂具有较佳的CO2加氢合成低碳烯烃性能,并随碱金属钾助剂的添加而明显改善;其CO2加氢反应具有(1)CO2+H2CO+H2O和(2)CO+(m/2n+1)H21/nCnHm+H2O两步反应机理;应用该反应机理,解释了CO2/H2比、反应温度、反应压力、反应气空速等对K-Fe-MnO/Si-2催化剂CO2加氢反应性能的影响;探讨了催化剂中K2O助剂的作用。  相似文献   

7.
CO+H_2合成醇体系的化学平衡分析   总被引:7,自引:0,他引:7  
对CO+H2合成醇反应体系进行了化学平衡分析,用最小自由能法计算得到不同温度、压力、合成气V(H2)/V(CO)比和CO2含量下的产物平衡组成及CO、H2的平衡转化率。ΔG°的计算表明,热力学上变换反应和生成烯烃的反应都比合成醇反应容易进行,低温对碳数高的醇生成有利,高温对碳数低的醇生成有利。与实验结果的对比表明,在Zn Cr K催化剂上由合成气合成醇,在气相和超临界条件下反应,体系中甲醇合成反应和变换反应均接近化学平衡,生成C2+OH的反应远离化学平衡,产物分布受动力学限制,而非受热力学限制。  相似文献   

8.
K2O是催化剂Fe-MnO/Silicalite-2由合成气制低碳烯烃的有效助剂,K2O能明显提高催化剂活性及低碳烯烃选择性。K2O助剂将抑制部分铁的还原,但能增强催化剂对CO的吸附能力,从而能提高催化剂活性,抑制甲烷的生成,K2O助剂能抑制乙烯在催化剂表面的二次反应(尤其是乙烯的歧化反应),从而提高CO/H及反应制低碳烯烃的选择性。  相似文献   

9.
通过高温焙烧降低Al2O3的酸度,可减弱催化剂表面乙烯的副反应,研制出具有高强度、好性能的合成气转化为低碳烯烃的催化剂。研究表明,Al2O3的酸性导致催化剂表面乙烯发生深度二次反应,致使CO加氢生成饱和烃及烯烃的选择性降低。  相似文献   

10.
热分析法研究NiCo_2O_4尖晶石型催化剂的还原特性   总被引:2,自引:0,他引:2  
用热分析技术研究NiCo2O4尖晶石型催化剂的还原特性,考察了助剂K+、Al3+的加入对NiCo2O4尖晶石型催化剂氧活性的影响。结果表明:K+的加入使还原温度明显降低,有助于促进催化剂的氧活性,而Al3+的加入起抑制作用。  相似文献   

11.
通过高温焙烧降低Al2O3的酸度,可减弱催化剂表面乙烯的副反应,研制出具有高强度、好性能的合成气转化为低碳烯烃的催化剂。研究表明,Al2O3的酸性导致催化剂表面乙烯发生深度二次反应,致使CO加氢生成饱和烃及烯烃的选择性降低。  相似文献   

12.
研究了在Cu-Co共沉淀催化剂中添加K、Rb、Cs等不同碱金属及不同添加量对CO+H_2合成低碳混合醇反应的影响.研究表明,碱金属用量及其种类明显影响低碳醇和烃的生成.添加适量K_2CO_3,可以有效促进C_2~+醇的生成及抑制烃和水的产生.在本实验条件下,含约1.0%(mass)K_2CO_3的催化剂其催化效果较好.并对实验结果作了讨论.  相似文献   

13.
中科院山西煤化所采用Ni改性的Cu-Mn/ZrO2催化剂进行CO加氢合成低碳混合醇的研究,在较温和的条件(T=573K,p=8.0MPa,GHSV=4500h-1)下,醇的时空产率为0.36g/(ml.h),总醇中C2+醇的选择性为30%。催化剂以共...  相似文献   

14.
三种晶型ZrO_2的制备及其催化性能的研究   总被引:1,自引:0,他引:1  
制备了在反应温度下能够稳定存在的3种晶型ZrO2催化剂,并分别对它们作为合成气制低碳烯烃反应中的催化剂进行了考察。ZrO2评价结果表明,ZrO2催化剂的品型结构与反应中的催化性能有关联性,它们在反应中均对低碳烯烃有较好的选择性,单斜晶型有利于生成异丁烯,而其它两种晶型则有利于乙烯生成,几乎无C4烯烃的生成。  相似文献   

15.
CO+H_2在ZrO_2催化剂上合成异构烃反应机理的研究   总被引:2,自引:0,他引:2  
在普通干凝胶和气凝胶两种ZrO2催化剂上进行了CO+H2合成异构烃的研究。结果表明,具有大比表面积和小粒径的气凝胶ZrO2催化剂,有较高的反应活性。通过对大量的实验结果和前人提出的反应机理的分析,提出一种新的合成异构烃反应机理,认为i-C4烃是通过一个C2表面物种与表面束缚的甲醛物种发生一系列醇醛缩合反应形成的。  相似文献   

16.
本文探讨了三种还原法(H2还原法、KBH4还原法、乙醇还原法)对CO2加氢合成甲醇Cu/ZnO催化剂结构及CO2加氢合成甲醇活性的影响。实验结果表明:催化剂经KBH4还原后,部分铜物种被还原成金属铜,同时带入了K^+,对CO2加氢合成甲醇反应影响很大;催化剂经高压釜乙醇处理后,铜物种全部被还原成金属铜,且晶粒很大,在ZnO上分散性差,对CO2加氢合成甲醇反应很大;催化剂经3%H2+N2还原后,铜在  相似文献   

17.
CO_2加氢合成乙醇   总被引:3,自引:0,他引:3  
CO_2加氢合成乙醇日本三菱煤气公司和国家材料化学研究所的罔本淳和田中和夫等使用加助剂的铁催化剂对CO2加氢生成高级醇特别是乙醇反应进行了研究,K2CO3/Cu-ZnO-Fe催化剂对乙醇的合成具有良好的效果。催化剂制备主要采用共沉淀法。在所制的共沉淀?..  相似文献   

18.
用微型固定床反应器,在中压(1.1MPa)条件下考察了助剂La、V、Zn、K对共沉淀Fe-Mn催化剂CO+H2合成反应性能的影响。反应结果表明,助剂La、K的加入均使CO+H2转化率降低,烃的选择性提高,产物中CH4减少,C5+增多,产物平均分子量增大,同时烯烷比也提高,但是助剂K使催化剂失活较快;助剂V使CO+H2的转化率降低,使产物中CH4增加,C5+减少,V对烯烷比影响不明显,但提高了合成反应的稳定性;助剂Zn使CO+H2的转化率提高,产物中CH4和C5+的含量都减少,C2~C4烃明显增加,烯烷比降低。  相似文献   

19.
合成气直接制取低碳烯烃单管扩大试验:II.催化剂性…   总被引:1,自引:1,他引:0  
将放大制备的原颗粒K-Fe-MnO/Silicalite-2催化剂在单管扩大试验装置上进行CO加氢制低碳烯烃反应,可达到CO转化率70% ̄90%、C2 ̄C4烯烃选择性72% ̄74%的反应结果,并具有很好的稳定性和单程操作寿命;研究单管扩大试验工艺参数对该催化剂CO加氢制低碳烯烃性能的影响。结果表明,该催化剂可适合于较宽的反应工艺条件范围。反应温度、压力、空速的变化对催化剂CO加氢反应制低碳烯烃选择  相似文献   

20.
在Silicalite-2分子筛担载的K-Fe/Si-2催化剂体系中添加MnO助剂,可明显提高CO/H2转化为低碳烯烃的选择性及催化活性。MnO助剂能促进K-Fe/Si-2催化剂中铁的还原,增加催化剂表面活性中心位,从而提高催化剂对CO的吸附容量,提高催化剂活性;MnO助剂能抑制催化剂表面乙烯、丙烯加氢反应,从而有利于提高低碳烯烃选择性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号