首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of water density on the acid-catalytic properties of TiO2 and WO3/TiO2 catalysts in supercritical water at 400 °C were investigated by using the kinetic analysis of the dehydration reaction of glycerol. The reaction selectivity of TiO2 and WO3/TiO2 catalysts and the apparent-reaction orders for water indicated that the acid-catalytic properties of these two catalysts show different dependence on water density. In the reaction using TiO2, the contribution of Lewis acid sites in TiO2 was large at a low water density, while the contribution of Brönsted acid sites in TiO2 increased with increasing water density. On the other hand, the reaction using WO3/TiO2 was mainly catalyzed by Brönsted acid sites in WO3/TiO2 even at a low water density, and the nature of Lewis/Brönsted acid sites in WO3/TiO2 was not influenced by the water density.  相似文献   

2.
The corrosion behavior of Inconel 625 in supercritical water was investigated under high pressure (30–100 MPa at 400 °C) with the addition of acids (5 mmol/kg CH3COOH or 0.5 mmol/kg HNO3) or O2 (2.5–250 mmol/kg). Ni and Cr ions were the main dissolved metal ions in the effluent. The Ni ion concentration showed no clear dependence on the O2 concentration or pressure in the experiment with O2; the concentration was lower than 0.05 ppm. The concentration increased with pressure up to 0.09 ppm and 3 ppm (at 100 MPa) in the experiment with CH3COOH and HNO3, respectively. The Cr ion concentration increased with the O2 concentration and pressure; the maximum value of the concentration was about 0.5 ppm. The Cr ion concentration was lower than 0.01 ppm in the experiment with CH3COOH, while the concentration was considerably higher in the experiment with HNO3: the concentration increased with pressure up to 0.87 ppm at 100 MPa. The effect of pressure on the corrosion behavior of Inconel 625 was discussed using potential-pH diagrams, metal oxide solubilities, pH, and equilibrium of ionic reactions. Pressure dependence of the metal ion concentrations was analyzed using a model with water density as a parameter; the log–log plots revealed a linear relationship.  相似文献   

3.
Phenol was oxidized in supercritical water at 380–450°C and 219–300 atm, using CuO/Al2O3 as a catalyst in a packed-bed flow reactor. The CuO catalyst has the desired effects of accelerating the phenol disappearance and CO2 formation rates relative to non-catalytic supercritical water oxidation (SCWO). It also simultaneously reduced the yield of undesired phenol dimers at a given phenol conversion. The rates of phenol disappearance and CO2 formation are sensitive to the phenol and O2 concentrations, but insensitive to the water density. A dual-site Langmuir–Hinshelwood–Hougen–Watson rate law used previously for catalytic SCWO of phenol over other transition metal oxides and the Mars–van Krevelen rate law can correlate the catalytic kinetics for phenol disappearance over CuO. The supported CuO catalyst exhibited a higher activity, on a mass of catalyst basis, for phenol disappearance and CO2 formation than did bulk MnO2 or bulk TiO2. The CuO catalyst had the lowest activity, however, when expressed on the basis of fresh catalyst surface area. The CuO catalyst exhibited some initial deactivation, but otherwise maintained its activity throughout 100 h of continuous use. Both Cu and Al were detected in the reactor effluent, however, which indicates the dissolution or erosion of the catalyst at reaction conditions.  相似文献   

4.
Supercritical water flow-through test facility (SCW-TF) for the study of hydrothermal fluids is described. The hydrodynamic behavior of the flow-through reactor is examined from ambient to supercritical water conditions by performing residence time distribution measurements. The results indicate that at 25 MPa, the employed reactor configuration exhibits plug flow behavior with a small extent of dispersion over the temperature range from 298 to 773 K. The experimentally determined effective volume of the reactor was used for the calculation of mean residence times of the fluid in the “hot zone” of the flow-through system. The thermal stability of hydrazine in aqueous solution was examined along the 25 MPa isobar from 473 to 725 K. The obtained first-order rate constant for the thermal decomposition of hydrazine increases from 3.73 × 10−4 s−1 at 473 K to about 0.31 s−1 at 725 K.  相似文献   

5.
High-pressure phase behaviors are measured for the CO2 + neopentyl methacrylate (NPMA) system at 40, 60, 80, 100, and 120 °C and pressure up to 160 bar. This system exhibits type-I phase behavior with a continuous mixture-critical curve. The experimental results for the CO2 + NPMA system are modeled using the Peng-Robinson equation of state. Experimental cloud-point data up to the temperature of 180 °C and the pressure of 2000 bar are presented for ternary mixtures of poly(neopentyl methacrylate) [poly(NPMA)] + supercritical solvents + NPMA systems. Cloud-point pressures of poly(NPMA) + CO2 + NPMA system are measured in the temperature range of 60-180 °C and to pressures as high as 2000 bar with NPMA concentration of 0.0, 5.2, 19.0, 28.1 and 40.2 wt%. It appears that adding 51.2 wt% NPMA to the poly(NPMA) + CO2 mixture does significantly change the phase behavior. Cloud-point curves are obtained for the binary mixtures of poly(NPMA) in supercritical propane, propylene, butane, 1-butene, and dimethyl ether (DME). The impact of dimethyl ether concentration on the phase behavior of the poly(NPMA) + CO2 + x wt% DME system is also measured at temperature of 180 °C and pressure range of 36-2000 bar. This system changes the pressure-temperature (P-T) slope of the phase behavior curves from upper critical solution temperature (UCST) region to lower critical solution temperature (LCST) region as the NPMA concentration increases.  相似文献   

6.
Sub-micron sized Zn2SiO4:Mn2+ phosphors particles were continuously synthesized in supercritical water with a flow reactor. Colloidal silica or sodium silicate was used as the Si source. Zn and Mn sources were chosen from their nitrates, sulfates, and acetates. The syntheses were carried out at temperatures from 400 to 500 °C, at pressures from 30 to 35 MPa, at NaOH concentrations from 0.014 to 0.025 M, and for residence times from 0.025 to 0.18 s. Sodium silicate formed α- and β-Zn2SiO4:Mn2+ phases regardless of the Zn and Mn sources, while colloidal silica formed phases dependent on the type of Zn and Mn sources used in addition to the use of alkali. As the reaction temperature increased, the crystallinity of α-Zn2SiO4:Mn2+ phase increased and the Mn substitution into the Zn sites of the α-Zn2SiO4 phase decreased. Of the conditions studied, the most highly crystalline α-Zn2SiO4:Mn2+ was produced at a temperature of 400 °C, a pressure of 30 MPa, a NaOH concentration of 0.14 M, and a residence time of 0.13 s with Zn and Mn sulfates and colloidal silica as starting materials. The α-Zn2SiO4:Mn2+ fine particles synthesized were round in shape, had an average diameter of 268 nm, and exhibited a green-emission with a peak wavelength of 524 nm.  相似文献   

7.
Perovskite-type ternary oxides with molecular formulae, La2−xSrxNiO4 (0 ≤ x ≤ 1), were prepared by a modified citric acid sol-gel route at 600 °C for their possible use in a direct methanol fuel cell (DMFC). The study was conducted by cyclic voltammetry, chronoamperometry, impedance and anodic Tafel polarization techniques. The results showed that the electrocatalytic activity of the base oxide (x = 0) in 1 M KOH plus 1 M CH3OH at 25 °C increases with x, the observed current densities being 23.6, 47.3, 43.2 and 50.9 mA cm−2 at a scan rate of 10 mV s−1 and E = 0.6 V versus Hg/HgO for oxides with x = 0, 0.25, 0.5 and 1.0, respectively. All the four perovskite anodes used in this study did not indicate any poisoning by the methanol oxidation intermediates/products. The methanol electro-oxidation reaction followed a Tafel slope of ∼2 × 2.303RT/3F (=40 mV decade−1) on each oxide catalyst, regardless of Sr content.  相似文献   

8.
In this study, we show the results of partial oxidation experiments of n-hexadecane (n-C16) and polyethylene (PE) in supercritical water (SCW). The experiments were carried out at 673 or 693 K of reaction temperature and 5 or 30 min of reaction time using a 6 cm3 of a batch type reactor. Water density ranged from 0.1 to 0.52 g/cm3 (water pressure: 20–40 MPa). The loaded amount of oxygen was set to 0.3 of the ratio of oxygen atom to carbon atom. Some experiments were made using CO instead of oxygen for the partial oxidation of n-C16 and PE to explore the effect of water gas shift reaction. In the results of partial oxidation of n-C16, the yield of CO and some compounds containing oxygen atoms, such as aldehydes and ketones increased with increasing water density. Moreover, 1-alkene/ n-alkane ratio in the products decreased with increasing water density. The 1-alkene/n-alkane ratio was lower than that of pyrolysis in SCW. Also for the case of PE experiments, in dense SCW (0.42 g/cm3), the 1-alkene/n-alkane ratio in partial oxidation was lower than that in SCW pyrolysis. In the case of CO experiments for n-C16 and PE, 1-alkene/n-alkane ratio was a little lower than that of pyrolysis in SCW. These results show that the yield of n-alkane, which is a hydrogenated compound, was higher through water gas shift reaction in SCW and also through partial oxidation in SCW. Therefore, these results suggest the possibility of hydrogenation of hydrocarbon through partial oxidation followed by the water gas shift reaction.  相似文献   

9.
ABSTRACT

To date, although no commercial process for the selective oxidation of methane has been realized, various novel processes with effective solid materials operated at low temperature have been proposed. It is found that the addition of water in any processes not only influences the activity, selectivity, and stability of the solid materials but also affects the extraction efficiency of methanol from the product. Herein, the published results on the roles of water in the methanol production via the quasicatalytic and catalytic selective methane oxidation process using various solid materials in gas and liquid phases at low temperatures are critically reviewed.  相似文献   

10.
We report results of quantum-chemical calculations within the framework of density functional theory for the oxidation of methanol on the (2 1 1) face of a platinum single crystal. Similar to the reaction pathway on the low indexed (1 1 1) crystal face water plays an important role as found from energy minimization calculations: the adsorption of methanol on charged and uncharged surfaces is strongly enhanced by the formation of a hydrogen bond to a coadsorbed water molecule. The methanol is adsorbed via a methyl hydrogen atom preceding scission of one of the CH-bonds as the first reaction step. In the presence of additional water, e.g., from a liquid phase, the onset of the oxidation reaction is favored by a coadsorbed neighboring water molecule which forms a hydrogen bond with the methanol OH-group. At a minimum number of adjacent water molecules (n≥2) the CH-bond as well as the OH-bond are cleaved on charged surfaces. The protonic charge stemming from the dissociation of the methanol hydroxyl group is delocalized inside the aqueous cluster and formaldehyde is formed as an intermediate product.  相似文献   

11.
Reaction of d-glucose in water to yield 5-hydroxymethylfurfural (5-HMF), 1,2,4-benzenetriol (BTO) and furfural was studied at high temperatures (up to 400 °C) and high pressures (up to 80 MPa) using a continuous flow reactor. Maximum temperature and pressure conditions gave maximum furfural yield. Increasing pressure from 40 to 70 and 80 MPa enhanced dehydration reactions to 5-HMF, but also enhanced hydrolysis of 5-HMF leading to the production of BTO and thus lead to lower yields of 5-HMF (below 10%). Remarkably, the dehydration reaction to 5-HMF and the hydrolysis of 5-HMF were both enhanced by the increase in water density at 400 °C.  相似文献   

12.
On-line NMR spectroscopy can beneficially be applied to studies of supercritical and near-critical fluids as an alternative to optical spectroscopy. Up to now high pressure NMR experiments are predominantly accomplished using custom made NMR batch reactors. The authors present a novel high pressure cell with displacement plunger for on-line NMR experiments on compressible fluids which can be used in conjunction with commercially available SCF NMR flow probes. The on-line technique offers advantages compared to stopped flow techniques such as enhanced control of mixture composition and reaction parameters as well as the facility of engagement into the reaction. The new apparatus is used for NMR studies on hydrogen bonding of methanol in near critical and supercritical carbon dioxide up to 403 K and 35 MPa for which data on the chemical shift of the hydroxyl group and methyl group are reported and interpreted.  相似文献   

13.
This work evaluates the anodic electrochemical behavior of titanium metal in hydrothermal oxidation conditions (up to 400 °C and 28 MPa) in chlorinated media in order to estimate the supercritical water oxidation reactors reliability for the treatment of less than 10% organic-waste waters. The titanium room temperature dissolution mechanism in chlorinated acidic medium (pH<0) is not fundamentally modified by oxygen. Deduced from the ‘current-potential’ and ‘valence-potential’ curves, it is based on four crucial elementary steps leading to two branches: a so-called active branch corresponding to a trivalent dissolution (its effect is inversely proportional to the pH), and a passive branch (TiO2 oxide formation with a very limited tetravalent dissolution). In hydrothermal oxidation (pH>1), only the second branch is effective. The titanium protection is directly related to the oxide stability in high pH systems. The mechanism model is expressed in terms of ‘current-potential’ laws, which provide kinetic parameters using optimization calculations. The different elementary steps reaction rates were estimated as well as the evolution of the reaction intermediates coverage ratios with the potential. The quantification of each elementary step was performed to understand and/or orient the materials behavior according to different factors (pH, chloride ions contents, potentials…).  相似文献   

14.
The adsorption and the decomposition of methanol on an oxygen precovered polycrystalline silver surface were characterized by high resolution electron energy loss spectroscopy. A stable methoxy species and subsequently two new intermediates related to the decomposition of methoxy have been isolated and identified by temperature profiled ELS.  相似文献   

15.
16.
The results of a detailed investigation into the kinetics of quinoline oxidation in supercritical water are presented. The novel kinetic data presented were obtained in a continuously operated, plug flow reactor where parameters such as temperature, pressure, residence time and stoichiometric ratio of oxidant to quinoline were investigated and detailed in the companion paper (Pinto LDS, Freitas dos Santos LMF, Al‐Duri B and Santos RCD, Supercritical water oxidation of quinoline in a continuous plug flow reactor—part 1: effect of key operating parameters. J Chem Technol Biotechnol). An induction time was experimentally observed, ranging from 1.5 to 3.5 s, with longer times observed in experiments carried out at lower temperatures. A pseudo‐first‐order rate expression with respect to quinoline concentration (with oxygen excess) was first adopted and the activation energy of 234 kJ mol?1 and a pre‐exponential factor of 2.1 × 1014 s?1 were estimated. Furthermore, an integral power rate model expression was established, attributing a reaction order for quinoline as 1 and for oxygen as 0.36. An activation energy and pre‐exponential factor for this model were determined as 224 kJ mol?1 and 3.68 × 1014 M?0.36 s?1, respectively. A global rate expression was then regressed for the quinoline reaction rate from the complete set of data. The resulting activation energy was 226 ± 19 kJ mol?1 and the pre‐exponential factor was 2.7 × 1013 ± 2 M?0.1 s?1. The reaction orders for quinoline and oxygen were 0.8 ± 0.1 and 0.3 ± 0.1, respectively. It was shown that the least‐squares regression method provided the best‐fit model for experimental results investigated in this study. Copyright © 2006 Society of Chemical Industry  相似文献   

17.
The system pressure effect on heat transfer of supercritical water (SCW) flows in a horizontal round tube has been studied by using computational fluid dynamics (CFD) technique, aiming for extending previous researches on the buoyancy effect by further investigating the coupling effects of the system pressure and the buoyancy. A commercial CFD software STAR-CD v4.02 has been used for this purpose. Simulation starts with the sensitive study of key issues, i.e. the mesh dependency, the turbulence model influence, and the near-wall treatments. It was found that on baseline mesh of 477 000 elements with near-wall grid resolution of y+=0.2, the simulation using the Speziale nonlinear high Reynolds k-? turbulence model and the Hassid and Poreh near-wall treatment gives the best predictions in comparison with the experimental data. After the validation, further simulations continued to study the system pressure effect on heat transfer characteristics of SCW flows in a horizontal round tube. It was found that when the buoyancy effect is negligible, the system pressure change has significant effects on the heat transfer of the flow. This implied that the SCW physical property variations due to the system pressure change could play some dominate roles on the heat transfer. However, when the buoyancy effect was considerably strong, the system pressure change has less effect on the heat transfer due to the strong influences of the buoyancy force. This finding has indicated that the heat transfer of SCW flows in a horizontal round tube was primarily governed by the buoyancy effect as observed by previous researchers, but the system pressure changes could also have some effects that cannot be simply ignored.  相似文献   

18.
Laminar flame speed measurements of dimethyl ether/air mixtures were made at 1, 5, and 10 atm with equivalence ratios ranging from 0.7 to 1.6. All experiments were performed in a large cylindrical constant-volume bomb with optical access. A new method for converting flame images into flame radii was used. Results reported in other studies were investigated, and some explanations on the disparities found are presented. A full uncertainty analysis was performed combining precision errors from data scatter with predicted systematic errors. Uncertainties ranging between 4.2% and 8.6% were found depending on the equivalence ratio and initial pressure. Experimental results agreed well with some other spherical flame experiments and counterflow flame measurements, but were found to be much lower than PIV-based stagnation flame results. Also, two spherical flame studies deviated significantly both in magnitude and trend. Critical radii and Peclet numbers, defined by the onset of rapid flame acceleration, were recorded for all high-pressure experiments. Markstein lengths were measured and showed a decreasing trend with increasing equivalence ratio. Three different methods were used to define the laminar flame thickness, and large disparities were found between them. In this study, the modeled temperature gradient method for the definition of flame thickness is preferred over other methods. Modeling was performed with the latest version of a C3 chemical kinetics mechanism. Good agreement is seen between the experimental results and the model at all pressures. Emphasis is placed in this paper on reporting experimental uncertainties, calculated density ratios, flame temperatures, and flame radii ranges used for data analysis, and the results resolve some discrepancies seen in the literature for dimethyl ether flame speeds.  相似文献   

19.
An autoclave (120-mL) and an optical micro-reactor (50-nL) were used to study the hydrothermal decomposition of d-glucose at high temperatures and high pressures. During slow heating (0.18 °C/s) to 350 °C in the autoclave, water-soluble glucose (0.9 M) began to decompose at 220 °C and reacted completely at 280 °C. The initial decomposition products were 5-(hydroxymethyl)furfural and levoglucosan, and these subsequently converted into oil and solid residue, and finally to solid particles at a 65 wt% yield at 350 °C. When the same heating rate and temperature were used on glucose solutions in the micro-reactor, yellow and orange materials decomposed from glucose were produced. Numerous particles precipitated at 251 °C, and at 350 °C, all the glucose changed to an orange film and solid particles, which were nanoparticles as confirmed by SEM. However, when the glucose solution was rapidly heated to 410 °C (9.5-17 °C/s), yellow, brown and orange sugar-like materials were produced. A homogeneous phase with yellow color still remained at temperatures as high as 380 °C, and few particles formed until 410 °C. It can be concluded that micron-sized particles and colored solutions can be produced by slow heating, while rapid heating resulted in the formation of dye-like substances with glucose-like structures. The formation of colored solutions and particles may have technological implications in food or materials formation processes that use high temperature water with biomass feedstocks.  相似文献   

20.
This work reports solubility data of methane and carbon dioxide in 1,4 butylene glycol and the Henry's law constant of each solute in the studied solvent at saturation pressure. The measurements were performed at 303, 323, 373, 398 and 423.15 K and pressures up to 3.8 MPa for mixtures containing carbon dioxide and pressures up to 10.9 MPa for mixtures containing methane. The experiments were performed in an autoclave type phase equilibrium apparatus using a technique based on the total pressure method (synthetic method). All investigated systems show an increase of gas solubility with the increase of pressure. A decrease of carbon dioxide solubility with the increase of temperature and an increase of methane solubility with the increase of temperature were observed. From the variation of solubility with temperature, the partial molar enthalpy and entropy change of each mixture were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号