首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
An analytic study on linear systems of fractional differential equations with constant coefficients is presented. We briefly describe the issues of existence, uniqueness and stability of the solutions for two classes of linear fractional differential systems. This paper deals with systems of differential equations of fractional order, where the orders are equal to real number or rational numbers between zero and one. Exact solutions for initial value problems of linear fractional differential systems are analytically derived. Existence and uniqueness results are proved for two classes. The presented results are illustrated by analyzing some examples to demonstrate the effectiveness of the presented analytical approaches.  相似文献   

2.
Fractional differential equations have wide applications in science and engineering. In this paper, we consider a class of control systems governed by the semilinear fractional differential equations in Hilbert spaces. By using the semigroup theory, the fractional power theory and fixed point strategy, a new set of sufficient conditions are formulated which guarantees the approximate controllability of semilinear fractional differential systems. The results are established under the assumption that the associated linear system is approximately controllable. Further, we extend the result to study the approximate controllability of fractional systems with nonlocal conditions. An example is provided to illustrate the application of the obtained theory.  相似文献   

3.
分数阶线性定常系统的稳定性及其判据   总被引:5,自引:1,他引:5       下载免费PDF全文
介绍了分数阶微分方程和分数阶系统 ,给出分数阶线性定常系统的传递函数描述和状态空间描述 .给出了分数阶线性定常系统的稳定性条件 ,并结合分数阶状态方程给出定理的证明 .直接从复分析中的辐角原理出发 ,推导出分数阶线性定常系统 2个有效的稳定性判据 :分数阶系统奈奎斯特判据和分数阶系统对数频率判据 .通过实例验证了其有效性  相似文献   

4.
A Newmark-diffusive scheme is presented for the time-domain solution of dynamic systems containing fractional derivatives. This scheme combines a classical Newmark time-integration method used to solve second-order mechanical systems (obtained for example after finite element discretization), with a diffusive representation based on the transformation of the fractional operator into a diagonal system of linear differential equations, which can be seen as internal memory variables. The focus is given on the algorithm implementation into a finite element framework, the strategies for choosing diffusive parameters, and applications to beam structures with a fractional Zener model.  相似文献   

5.
A controllable linear system of ordinary differential equations not solvable for the derivative of the vector state function of the system is investigated. The coefficient matrix at the derivative of the vector state function is assumed to be degenerate at all points of the domain of definition. Controllability criteria for systems with constant and variable coefficient matrices are formulated in terms of input data.  相似文献   

6.
This paper deals with robust path tracking using flatness principles extended to fractional linear MIMO systems. As soon as the path has been obtained by means of the fractional flatness, a robust path tracking based on CRONE control is presented. Flatness in path planning is used to determine the controls to apply without integrating any differential equations when the trajectory is fixed (in space and in time). Several developments have been made for fractional linear SISO systems using a transfer function approach. For fractional systems, especially in MIMO, developments are still to be made. Throughout this paper, flatness principles are applied using polynomial matrices for fractional linear MIMO systems. To illustrate the robustness performances, a third-generation multi-scalar CRONE controller is compared to a PID one.  相似文献   

7.
A class of dynamic control systems described by nonlinear fractional stochastic differential equations in Hilbert spaces is considered. Using fixed point technique, fractional calculations, stochastic analysis technique and methods adopted directly from deterministic control problems, a new set of sufficient conditions for approximate controllability of fractional stochastic differential equations is formulated and proved. In particular, we discuss the approximate controllability of nonlinear fractional stochastic control system under the assumptions that the corresponding linear system is approximately controllable. The results in this paper are generalization and continuation of the recent results on this issue. An example is provided to show the application of our result. Finally as a remark, the compactness of semigroup is not assumed and subsequently the conditions are obtained for exact controllability result.  相似文献   

8.
Existence of periodic solutions and stability of fractional order dynamic systems are two important and difficult issues in fractional order systems (FOS) field. In this paper, the relationship between integer order systems (IOS) and fractional order systems is discussed. A new proof method based on the above involved relationship for the non existence of periodic solutions of rational fractional order linear time invariant systems is derived. Rational fractional order linear time invariant autonomous system is proved to be equivalent to an integer order linear time invariant non-autonomous system. It is further proved that stability of a fractional order linear time invariant autonomous system is equivalent to the stability of another corresponding integer order linear time invariant autonomous system. The examples and state figures are given to illustrate the effects of conclusion derived.   相似文献   

9.
This article mainly studies the fractional‐order active disturbance rejection control (FOADRC) schemes for the underactuated commensurate fractional‐order systems (FOSs). The FOADRC framework for linear FOSs‐based fractional proportion integration differentiation is constructed by using the fractional‐order tracking differentiator and the fractional‐order extended state observer, and the necessary conditions for the system to have stable controllers are provided. The FOADRC scheme for underactuated FOSs based on differential flatness is proposed. For underactuated FOSs, a set of flat output expressions with a fixed format is given under the controllable condition of the system. Moreover, making the flat output as the equivalent of the system output is simple and easy to analyze and calculate. Subsequently, the FOADRC scheme is designed by using the flat output. Finally, the scheme proposed in this article is verified by a simulation example.  相似文献   

10.
A note on the stability of fractional order systems   总被引:1,自引:0,他引:1  
In this paper, a new approach is suggested to investigate stability in a family of fractional order linear time invariant systems with order between 1 and 2. The proposed method relies on finding a linear ordinary system that possesses the same stability property as the fractional order system. In this way, instead of performing the stability analysis on the fractional order systems, the analysis is converted into the domain of ordinary systems which is well established and well understood. As a useful consequence, we have extended two general tests for robust stability check of ordinary systems to fractional order systems.  相似文献   

11.
Cybernetics and Systems Analysis - The pursuit problem for linear fractional differential systems with pure delay is considered. A scheme of the method of resolving functions for these...  相似文献   

12.
We prove the approximate controllability of control systems governed by a class of partial neutral functional differential systems of fractional order with state-dependent delay in an abstract space. Sufficient conditions for approximate controllability of the control systems are established provided the approximate controllability of the corresponding linear control systems. The results are obtained by using the Krasnoselskii–Schaefer type fixed point theorem with the fractional power of operators. An example is provided to illustrate the main results.  相似文献   

13.
14.
15.
基于分数阶线性系统的稳定性理论,结合反馈控制和主动控制方法,提出了实现分数阶混沌系统的延迟同步的一种新方法.该方案通过设计合适的控制器将分数阶混沌系统的延迟同步问题转化为分数阶线性误差系统在原点的渐近稳定性问题.分数阶Chen系统的数值模拟结果验证了该方案的有效性.  相似文献   

16.
In this paper, we mainly focused the approximate controllability results for a class of non-densely defined fractional neutral differential control systems. First, we establish a set of sufficient conditions for the approximate controllability for a class of fractional differential inclusions with infinite delay where the linear part is non-densely defined and satisfies the Hille–Yosida condition. The main techniques rely on Bohnenblust– Karlin's fixed point theorem, operator semigroups and fractional calculus. Further, we extend the result to study the approximate controllability concept with nonlocal conditions. Finally, an example is also given for the illustration of the obtained theoretical results.  相似文献   

17.
Fractional calculus has been used to model physical and engineering processes that are found to be best described by fractional differential equations. For that reason we need a reliable and efficient technique for the solution of fractional differential equations. This paper deals with the numerical solution of a class of fractional differential equations. The fractional derivatives are described in the Caputo sense. Our main aim is to generalize the Legendre operational matrix to the fractional calculus. In this approach, a truncated Legendre series together with the Legendre operational matrix of fractional derivatives are used for numerical integration of fractional differential equations. The main characteristic behind the approach using this technique is that it reduces such problems to those of solving a system of algebraic equations thus greatly simplifying the problem. The method is applied to solve two types of fractional differential equations, linear and nonlinear. Illustrative examples are included to demonstrate the validity and applicability of the presented technique.  相似文献   

18.
综述我们在分数阶动力学分析力学方法的研究进展,包括:分数阶动力学系统的分析力学表示,构造分数阶动力学模型的分析力学方法,构造分数阶动力学模型团簇的分析力学方法,三类分数阶Lie群无限小变换方法,分数阶动力学系统的对称性、对称性摄动和共形不变性的分析力学方法,分数阶动力学系统的代数结构与Poisson积分的分析力学方法,构造分数阶动力学系统积分不变量的分析力学方法,分数阶动力学系统梯度表示的分析力学方法,分数阶动力学系统稳定性的分析力学方法,分数阶微分方程的分析力学方法等,介绍了对于物理学、力学、生物学、非线性科学等领域的10多种分数阶动力学模型的应用,并指出了若干进一步研究的问题.  相似文献   

19.
A non-standard finite difference scheme is developed to solve the linear partial differential equations with time- and space-fractional derivatives. The Grunwald–Letnikov method is used to approximate the fractional derivatives. Numerical illustrations that include the linear inhomogeneous time-fractional equation, linear space-fractional telegraph equation, linear inhomogeneous fractional Burgers equation and the fractional wave equation are investigated to show the pertinent features of the technique. Numerical results are presented graphically and reveal that the non-standard finite difference scheme is very effective and convenient for solving linear partial differential equations of fractional order.  相似文献   

20.
This paper investigates active disturbance rejection control involving the fractional‐order tracking differentiator, the fractional‐order PID controller with compensation and the fractional‐order extended state observer for nonlinear fractional‐order systems. Firstly, the fractional‐order optimal‐time control scheme is studied to propose the fractional‐order tracking differentiator by the Hamilton function and fractional‐order optimal conditions. Secondly, the linear fractional‐order extend state observer is offered to acquire the estimated value of the sum of nonlinear functions and disturbances existing in the investigated nonlinear fractional‐order plant. For the disturbance existing in the feedback output, the effect of the disturbance is discussed to choose a reasonable parameter in fractional‐order extended state observer. Thirdly, by this observed value, the nonlinear fractional‐order plant is converted into a linear fractional‐order plant by adding the compensation in the controller. With the aid of real root boundary, complex root boundary, and imaginary boot boundary, the approximate stabilizing boundary with respect to the integral and differential coefficients is determined for the given proportional coefficient, integral order and differential order. By choosing the suitable parameters, the fractional‐order active disturbance rejection control scheme can deal with the unknown nonlinear functions and disturbances. Finally, the illustrative examples are given to verify the effectiveness of fractional‐order active disturbance rejection control scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号