首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
含铌微合金高强度钢Q345C连铸坯的热塑性   总被引:1,自引:0,他引:1  
 通过Gleeble-2000 试验机研究了Q345C钢连铸坯的高温热塑性。利用扫描电镜、金相显微镜、透射电镜观察了第Ⅰ、Ⅲ脆性温度区内拉伸试样断口部位的显微组织及形貌,分析了动态再结晶、相变、析出物等对微合金化钢高温延塑性的影响。结果表明:在1×10-3/s应变速率下, Q345C钢存在两个脆性温度区,即第Ⅰ脆性区(1200~1300℃)和第Ⅲ脆性区(600~875℃),无第Ⅱ脆性区出现;最高塑性出现在1050℃左右,断面收缩率(Z)达到85.8%;在第Ⅲ脆性区,沿奥氏体晶界析出膜状铁素体抗拉能力较低,晶界处存在夹杂物以及微合金元素的析出物,是钢的热塑性降低的主要原因。  相似文献   

2.
摘要:采用Gleeble-3500热模拟试验机和金相法测试了不同应变速率下建筑用钢Q460连铸坯的高温力学性能,获得了600~1200℃范围内Q460连铸坯的高温强度、热塑性和最终室温组织随拉伸温度和应变速率的变化规律。结果表明,当Q460连铸坯在较高的应变速率(10s-1)下进行高温拉伸时,试样的断面收缩率随着拉伸温度的升高而升高,没有出现高温脆性区;在较低的应变速率(10-3s-1)下进行高温拉伸时,试样的断面收缩率出现了2个脆性区,第1个在1100℃至熔点温度,第2个脆性区间在700℃附近。总体来说,实验钢种的高温断面收缩率均大于65%,表明建筑用钢Q460连铸坯具有较好的高温热塑性。此外,同一应变速率下,Q460连铸坯的抗拉强度随着拉伸温度的升高而降低,而伸长率随着拉伸温度的升高而升高。  相似文献   

3.
Q460C连铸板坯的高温塑性   总被引:1,自引:0,他引:1  
 在Gleeble 1500热模拟机上测定了Q460C连铸坯的热塑性,深入分析了钢Q460C的高温脆化机理,确定了连铸坯的最佳矫直温度。结果表明,钢Q460C高温脆化受变形速率的影响较大,在第Ⅲ脆性区变形速率越低脆化越严重,实验用钢Q460C的低塑性区确定在660~985 ℃,连铸坯顶弯、矫直温度应高于985 ℃,有利于提高塑性,避免连铸坯表面裂纹的产生。  相似文献   

4.
在Gleeble-2000热模拟机上,针对Q345C钢连铸坯,进行了高温热塑性测试.分析了Q345C钢试样的断口性质及显微组织与塑性的关系.研究了第Ⅲ脆性区的脆化原因.实验结果表明:在1 300~600℃区间存在两个脆性温度区,其中第Ⅲ脆性温度域为600~850℃,其断面收缩率RA范围是60.23%~29.61%;指出了该钢种在实际生产条件下适宜的铸坯矫直温度.  相似文献   

5.
测试了熔点~700℃温度区间含铌钛钢X-52连铸坯的高温延塑性.根据断口形貌、组织以及钢中析出物等的变化情况分析了该钢的脆化机理.结果表明:在熔点~700℃温度区间,X-52钢存在2个脆性区,熔点~138℃的第Ⅰ脆性区,925~825℃的第Ⅲ脆性区.细小的NbCN沿奥氏体晶界的动态析出是造成第Ⅲ区脆化的主要原因.可通过向钢中添加少量的钛,以降低晶界处细小的NbCN的析出量,防止光共析铁素体在奥氏体晶界呈网状析出而改善钢的热塑性.  相似文献   

6.
HG70钢连铸坯的高温热塑性行为分析   总被引:1,自引:0,他引:1  
采用Gleeble2000试验机测试了HG70钢连铸坯的高温力学性能,利用金相显微镜、扫描电镜、透射电镜观察了第Ⅲ脆性温度区内拉伸试样断口部位的显微组织及形貌。结果表明HG70钢的高温强度较好,500℃时的抗拉强度为550 MPa;第二相引起塑性凹槽区的温度范围与晶界铁素体网膜导致塑性凹槽区的温度范围连接叠加,导致第Ⅲ脆性温度口袋区谷底低、平谷宽。  相似文献   

7.
用Gleeble-2000热模拟机研究了Q345C钢250 mm×1 300 mm连铸坯热履历-连铸坯冷却过程和冷坯加热过程(300~1 320℃)的温度变化,应变速度(3~3×10-4 s-1)和降温速率(1~20℃/s)对热塑性的影响。结果表明,Q345C钢从1320℃冷却到钢的第Ⅲ脆性区,冷却速度越高,钢在第Ⅲ脆性区塑性越差;在600~850℃,连铸坯冷装加热后的热塑性要好于从液态直接冷却到这个温度区间的热塑性;在钢的第Ⅲ脆性区内,钢的热塑性随变形速率增大而变好。  相似文献   

8.
利用GLEEBLE-3800热模拟机对安钢100 t电弧炉生产的Q355D低合金板坯的高温热力学性能进行测试,测试温度为600~1 350℃,应变速率为1.0×10-3s-1,并通过金相和扫描电镜对不同温度下的金相组织及断口形貌进行观察分析。结果表明:电弧炉钢Q355D存在明显的高温塑性区和低温脆性区,高温塑性区为1 150~1 300℃,该区间最低断面收缩率为60.9%;第Ⅲ脆性区为650~950℃,温度小于950℃之后铸坯收缩率迅速由88.1%降低至900℃的33.1%,断面收缩率在800℃时达到最低,为23.9%。  相似文献   

9.
利用Gleeble - 3500热模拟机,针对汽车大梁板610L连铸坯,进行了高温热塑性试验.同时利用扫描电镜分析试样的断口性质及显微组织与塑性的关系.试验结果表明:在1 300~600℃区间存在两个脆性温度区,其中第Ⅲ脆性温度区为910 ~705℃.研究了第Ⅲ脆性区的脆化原因.为该钢种连铸和热轧工艺制度的制定提供了依...  相似文献   

10.
通过Gleeble-3500高温模拟试验机对Q460C钢种高温塑性区间进行了测定,深入分析了Q460C钢的高温断裂机理,确定了最佳的铸坯矫直区间。研究表明:600℃~800℃为Q460C钢的低温脆性区,在该区间断裂形式以混合断裂为主;900℃~1 050℃塑性最好,断面收缩率在85%以上,此时的断裂形式为韧性断裂;在1 050℃~1 250℃拉伸时断面收缩率有所降低,但仍在75%以上,通过对其断口分析发现其主要原因是Nb(CN)的沉淀析出造成。  相似文献   

11.
闫兴华  葛影  孙利恒 《河北冶金》2012,(4):49-52,67
分析了SS400出现纵向裂纹的原因为晶粒粗大,组织疏松,浇铸温度过高,浇铸过程中形成了成分偏析,拉速与保护渣粘度匹配不合理,浇铸过程中水口插入太深,导致保护渣被卷入板坯形成夹杂物,结晶器铜板厚度不合理。通过控制钢中[C]、[P]、[S],稳定拉速,浇铸速度,选择合适的结晶器及保护渣,控制二冷水的水量及强度,保持水口插入深度在钢液面10 mm以下,控制浇铸温度和板坯宽度等措施,纵向裂纹得到有效控制。  相似文献   

12.
对低合金高强度结构钢Q345D连铸坯中大型夹杂物的类型、数量、尺寸以及分布情况进行了研究,并通过示踪剂追踪分析了钢中夹杂物的来源。研究表明:正常铸坯中的大型夹杂物的含量为26.76mg/10 kg,粒度分布在50~100μm;有SiO2夹杂、SiO2-CaO-Al2O3复合夹杂和硫化物夹杂等3类,主要来源于脱氧产物,其次为结晶器保护渣、中包覆盖剂和钢包渣的卷渣。  相似文献   

13.
陈长芳  李雷 《河北冶金》2011,(12):17-19
采用化学成分分析、宏观和微观检验等手段,对Q345B低合金高强度钢连铸板坯断裂的原因进行了分析,研究表明,连铸坯内部存在较多、较大夹杂物是导致板坯在多次倒运后断裂的主要原因,采取预防措施后,铸坯未出现中间断裂现象。  相似文献   

14.
连铸坯偏析研究发展近况   总被引:1,自引:0,他引:1  
综述了连铸坯偏析的形成原因、影响因素及减少连铸坯偏析的方法,介绍了连铸坯偏析的数学模型及测试连铸坯偏析的最新进展情况。  相似文献   

15.
米科峰 《河北冶金》2016,(11):42-43
结合当前钢铁市场形势,简要介绍了小方坯连铸直轧技术的概念、分类、技术优势和关键技术等内容,对国内已实施了的连铸直轧技术进行了简要对比和分析。同时,对如何充分发挥小方坯连铸直轧技术优势提出了见解。  相似文献   

16.
张洪波 《河北冶金》1997,(5):12-15,19
分析了连铸结晶器腔形状和结构设计的基本要求,讨论了小方坯连铸结晶器的发展以及取得的工艺效果。  相似文献   

17.
方坯高效连铸技术的进展   总被引:7,自引:1,他引:6  
综述了高效连铸技术的发展状况,以技术集成的观点系统地论述了高效连铸技术。  相似文献   

18.
钢液凝固过程中碳的不均匀分布是导致铸坯低倍碳偏析的主要原因,研究了钢水过热度、拉速、电磁搅拌强度对铸坯碳偏析指数的影响。在正常生产条件下,将中间包浇铸过热度控制在20~30℃、拉速1.8 m/min、结晶器电磁搅拌在200 A和4 Hz,对铸坯碳偏析改善有利,碳偏析指数降到了1.02。  相似文献   

19.
以技术集成的观点系统阐述了高效连铸的核心技术,从工艺和装备角度将其分为结晶器本体技术和结晶器相关技术  相似文献   

20.
A350 LF6连铸坯表面网状裂纹分析   总被引:1,自引:0,他引:1  
采用电子显微分析及能谱仪微区成分分析等方法,对A350 LF6连铸坯表面裂纹产生原因进行了分析。结果表明:高温下Cu元素在奥氏体晶界的富集是连铸坯表面产生沿晶网状裂纹的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号