首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corn–milk yogurt set by a combination of sodium caseinate plus gelatin at concentrations of 0, 0.2, 0.4 and 0.6% (w/v) were studied. The quality of the gels was determined by measurement of acidity, syneresis, texture profile analysis, viscoelasticity, structure scanning electron microscope and microbiology. Texture profile analysis (TPA) showed that increasing levels of gelatin increased hardness, adhesiveness and springiness as well as the acidity of the products. Viscoelastic behaviour displayed similar trends to the TPA characteristics, the storage modulus was less frequency dependent than the loss modulus giving a loss tangent of 0.2 in the high gelatin systems, which might indicate a true gel system. The microstructure was dense and spongy-like with small air cells, in particular, those having a high concentration of gelatin (0.6%, w/v) gave a very firm structure which might impair palatability. The addition of a commercial gelatin at 0.4% (w/v) gave good acceptability for the product (little syneresis of the gels produced). While the gelatin used for this study had a bloom value of 246 g the authors acknowledge that a different commercial gelatin may well result in a different concentration being required.  相似文献   

2.
This study evaluated the stability of bilayer emulsions as a function of secondary layer composition and pH. Primary emulsions were formulated with 5% soybean oil, 1% protein from nonfat dry milk (NDM) powder as emulsifier and ι-carrageenan (ι-carr), low-methoxyl pectin (LMp), high-methoxyl pectin (HMp), or gelatin as secondary layers. ζ-Potential values increased for each emulsion as the pH decreased, with ι-carr emulsions being consistently more negatively charged than primary emulsions and significantly more stable. ζ-Potential values were not always correlated to emulsion stability. Gelatin secondary emulsions at pH 3 and HMp secondary emulsions at pH 7 were unstable due to the presence of depletion flocculation. In addition, LMp secondary emulsions stability at pH 7 might be due to calcium bridging, which increased the emulsion's viscosity. Overall, the stability of NDM emulsions was improved when ι-carr and LMp were used as secondary layers at pH 7 and 5, and when ι-carr and HMp were used as secondary layers at pH 3. Increased stability of these systems can be attributed to a second homogenization step used to formulate the secondary emulsions and to the presence of Ca(+2) in the NDM. Results from this research show that the stability of bilayer emulsions is driven by the presence of depletion flocculation, droplet charge, droplet size and distribution and viscosity. PRACTICAL APPLICATION: The use of everyday ingredients (nonfat dry milk powder, gelatin, pectin, and carrageenan), which are understood and accepted by the average consumer, creates label-friendly products that are the wave of the future. Stable emulsions can be formed using these ingredients at various pH. Understanding the stability and how the pH impacts the physicochemical characteristics and stability of these emulsions will enable manufactures to use ordinary ingredients to create healthier products (for example, low-fat dressings, sauces, dips, and beverages).  相似文献   

3.
A nanoclay composite film was produced using warm water fish gelatin as a base material and its physical, mechanical, and molecular weight change properties were observed after treatment with microbial transglutaminase. The viscosity of the MTGase-treated gelatin solution (2% w/w) increased from 86.25 ± 1.77 (0 min) to 243 ± 12.37 cp (80 min). SDS–PAGE results indicated that the molecular weight of fish gelatin solutions increased after treatment with microbial transglutaminase. Tensile strength decreased from 61.60 ± 1.77 (0 min) to 56.42 ± 2.40 MPa (30 min), while E% increased from 13.94 ± 5.09 (0 min) to 15.78 ± 5.97% (30 min) at 2% (w/w) MTGase concentration. The oxygen permeability and water vapour permeability did not change as a function of treatment time at 2% (w/w) MTGase concentration. The incorporation of nanoclay inhibited the increase of oxygen permeability. Film colour values (L, a, and b) did not change, but haze values increased from 5.24 ± 0.40 (0 min) to 6.44 ± 0.94 (50 min). XRD and TEM results suggested that the nanoclay was exfoliated in fish gelatin film.  相似文献   

4.
Gelatin–olive oil composite films were prepared through emulsification to improve water barrier ability of gelatin-based films. The effects of homogenization conditions of film-forming dispersions (FFD) on lipid droplets distributions in the FFD and films were evaluated and compared. Some selected physical properties, e.g., water vapor permeability (WVP), microstructure of the films were also evaluated. The rotor–stator homogenizer provided a lower energy input and so the largest particles were observed in the related FFD and films. These films exhibited excellent water barrier ability, but poor mechanical resistance, extensibility and transparency. The microfluidizer provided the FFD with lower and narrower particle size distributions, promoting mechanical resistance, extensibility and transparency of the films. The physical properties of the emulsified films were dependent on the special microfluidization pressure or cycle used, e.g., the WVP of the films decreased upon increasing microfluidization pressure or cycle. The present results indicated that the microfluidizer can be used to modulate lipid droplets in the FFD, thus films’ properties.  相似文献   

5.
Nanosized material fillers are widely used to enhance certain properties of polymers. Moreover, the use of nanoclays as a delivery host in pharmaceutical fields has gained a great interest. Sepiolite was incorporated to gelatin–egg white films containing clove essential oil. The effect of the incorporation of both sepiolite and clove essential oil on the physical properties of the resultant films was evaluated. Special attention was given to the role of this nanoclay in the release of antioxidant and antimicrobial compounds from the film matrix. Sepiolite showed a reinforcement effect of Young’s modulus and tensile strength, meanwhile the clove essential oil had a certain plasticizing effect by increasing the elongation at break and water vapour permeability (WVP). When both compounds were added together, a noticeable loss of mechanical properties was observed, related to the loss of gelling capacity (G′), protein self-aggregation and α-helix structure decrease (FTIR). However, the WPV increased, probably due to the presence of cavities in the matrix observed by SEM. The incorporation of sepiolite in these films containing clove essential oil increased the release of both protein components and eugenol from the film matrix, leading to a controlled release of the antioxidant activity measured by ferric reducing ability and radical scavenging capacity, as well as a higher antimicrobial effect.  相似文献   

6.
There is an increasing demand to tailor the functional properties of mixed biopolymer systems that find application in dairy food products. The effect of static high pressure processing (HPP), up to 600 MPa for 15 min at room temperature, on milk–gelatin mixtures with different solid concentrations (5%, 10%, 15% and 20% w/w milk solid and 0.6% w/w gelatin) was investigated. The viscosity remarkably increased in mixtures prepared with high milk solid concentration (15% and 20% w/w) following HPP at 300 MPa, whereas HPP at 600 MPa caused a decline in viscosity. This was due to ruptured aggregates and phase separation as confirmed by confocal laser scanning microscopy. Molecular bonding of the milk–gelatin mixtures due to HPP was shown by Fourier-transform infrared spectra, particularly within the regions of 1610–1690 and 1480–1575 cm−1, which reflect the vibrational bands of amide I and amide II, respectively.  相似文献   

7.
《Food Hydrocolloids》1986,1(2):153-161
The stress relaxation behavior of an agar—gelatin mixture gel was analyzed as a function of the stress relaxation behaviors of the component agar and gelatin gels. A six-element model composed of three components of the Maxwell mechanical model was applicable for each stress relaxation behavior. Except for the behavior of the shortest relaxation time, the three elastic moduli of the mixture gel, including the instantaneous elastic modulus, became predictable from the corresponding moduli of the agar and the gelatin gels, taking into account the concentration dependence and using a parallel-series combination model for the elasticity. The viscosities of the mixture gel were also predictable from the corresponding viscosities of the component agar and gelatin gels, except for the behavior of the shortest relaxation time.  相似文献   

8.
Polymeric nanofibers as one of the most known nanotechnology products have huge potential applications in many fields due to their high aspect ratio and porosity, being capable of formation of three-dimensional structures and having great mechanical and biological properties. Chitosan is a natural abundant polymer which has attracted huge interests in biomedical and biological industries due to its biocompatible, biodegradable, and non-toxicity properties. However, electrospinning of chitosan is found to be a great challenge, blending it with other polymers such as gelatin was explored as means to improve the morphological deficiencies of chitosan nanofibers and facilitate its electrospinnability. On the other hand, montmorillonite (MMT) has been attracted great attention due to its remarkable improvement in properties of polymeric composites nanofibers. The main objective of this work was on effect of concretion of gelatin–chitosan blends and MMT on morphology of resulted nanocomposite nanofibers. The x-ray diffraction data demonstrated the exfoliation of MMT layers. The morphology of electrospun chiosan–gelatin–MMT composite nanofibers was characterized using scanning electron microscope (SEM). The miscibility of blend was determined using SEM and Fourier transform infrared spectrometer/attenuated total reflectance.  相似文献   

9.
The microstructure and elastic modulus (G′) of phase-separated gelatin + hydroxypropyl starch gels containing emulsified olive oil were investigated. Either droplet-type or bicontinuous gel morphologies were obtained depending on the initial placement (gelatin or starch) and proportion of added oil as well as the presence of polysorbate 20 dispersed in the oil. A gradual increase in oil content generally led to an increase in the volume fraction and microstructural interconnectivity of the oil-containing phase. However, addition of polysorbate 20 increased the tendency of the dispersed oil droplets to reside at the gelatin–starch periphery and potentially relocate to the phase initially lacking any oil. Compared to the control phase-separated gelatin–starch system, the largest increase in G′ was seen upon addition of oil to the gelatin phase of the phase-separated systems whereas the smallest rise occurred with polysorbate 20-containing oil added to the starch phase. This strongly indicated that the dispersed oil phase acted as an active filler within the phase-separated gel matrix. As each microstructure imparted its own rheological properties, these observations demonstrated the possibility of creating a diverse group of phase-separated emulsion gel microstructures with user-defined G′ values, depending on the proportion and initial location of the emulsified oil within the gel as well as the presence of a surfactant.  相似文献   

10.
Effects of moisture content, xanthan gum (XG) addition, and glucose syrup (GS):sucrose ratio on the gelation of gelatin-XG systems with high levels of co-solutes were investigated in the rubbery and the glass transition regions. Frequency sweep tests were performed between 0.1 and 100 rad and the storage (G′) and loss (G″) moduli of the system were measured in the temperature range of 60 to −15 °C. The onset of glass transition region increased with decreasing moisture content. The time–temperature superposition yielded master curves of G′ and G″ as a function of timescale of measurement. G″ and G″ were superimposed with the horizontal shift factor aT, which was temperature dependent according to the Williams–Landel–Ferry (WLF) equation. Glass transition temperature (Tg) of the samples were determined by dynamic mechanical analysis (DMA) from the peak of tan δ. Tg decreased with XG addition. The energy of vitrification of samples with XG increased compared to samples containing only gelatin. Relaxation spectra of the samples were calculated from rheological measurements using the first and second approximations. The Rouse theory was more closely followed with the second approximation.  相似文献   

11.
Active biodegradable films based on agar and agar–fish gelatin were developed by the incorporation of green tea aqueous extract to the film forming solution. The effect of the partial replacement of agar by fish skin gelatin as well as the addition of the green tea extract on the physical properties of the resultant films was evaluated. Special attention was given to the release of antioxidant and antimicrobial compounds from the agar film matrices with and without gelatin. Agar–gelatin films were less resistant and more deformable than agar films. The inclusion of green tea extract decreased tensile strength and elongation at break in both agar and agar–gelatin films. Water vapour permeability and water resistance was not affected either by the replacement of agar by gelatin or the addition of green tea extract, but the water solubility noticeably increased in the films containing green tea extract. The presence of gelatin in the agar–green tea matrix film hindered the release of total phenolic compounds, catechins and flavonols in water. As a consequence, the antioxidant power released by the films was lower in the case of films containing gelatin. However, the antimicrobial activity of the films was not affected by the presence of gelatin.  相似文献   

12.
The effect of chitosan–gelatin coating and film on the rancidity development in rainbow trout (Oncorhynchus mykiss) fillets during refrigerated storage (4 ± 1 °C) was examined over a period of 16 days. Composite and bilayer coated and film wrapped fish samples were analysed periodically for microbiological (total viable count, psychrotrophic count) and chemical (TVB-N, POV, TBARS, FFA) characteristics. The results indicated that chitosan–gelatin coating and film retained their good quality characteristics and extend the shelf life of fish samples during refrigerated storage .The coating was better than the film in reducing lipid oxidation of fillets, but there was no significant difference between them in control of bacterial contamination.  相似文献   

13.
The interest in the development of edible and biodegradable films has increased because it is every day more evident that non-degradable materials are doing much damage to the environment. In this research, bioplastics were based on blends of manioc starch (native and modified) and gelatin in different proportions, added of glycerol or sorbitol, which were used as plasticizers. The objective was to study the effect of two different plasticizers, glycerol and sorbitol, and different concentrations of starch and gelatin on the barrier (water vapor permeability – WVP), mechanical (tensile strength and elongation at break), physicochemical (solubility in water and in acid) and physical properties (opacity and thickness) of the obtained bioplastics samples. As a result, all of them showed transparency and resistance to tensile strength, as well as increasing in thickness values and in the WVP, as the gelatin content increased in the formulations. Finally, all results for tensile strength and elongation at break obtained for those samples plasticized with sorbitol were better than those plasticized with glycerol.  相似文献   

14.
Mechanical properties of gelatin–xanthan gum (XG) mixtures with high levels of co-solutes were examined by dynamic mechanical analysis (DMA). The mechanical spectra of the samples were modeled according to the Williams–Landel–Ferry (WLF) equation/free-volume theory, which requires an entropic lightly cross-linked network. For the α dispersion, E′ and E′′ superposed with the horizontal shift factor aT, which was temperature-dependent according to the WLF equation; no other secondary dispersion mechanism was detected. The addition of XG to gelatin networks with high levels of co-solutes changed the glass transition temperature (Tg) and kinetics of glass transition and glassy states. In the glassy state, the WLF equation was unable to follow progress in the mechanical properties, which were better described by the Andrade equation. The calorimetric measurements of the gelatin–XG systems were made using a modulated temperature differential scanning calorimetry (MTDSC) to improve the determination of Tg. The samples were exposed to two cooling and heating cycles to provide a controlled recent thermal history in the temperature range of 40 °C to −70 °C. The Tg values of the samples were determined from the second heating cycle in the reversing heat signal. The calorimetric Tg values increased with increasing glucose syrup:sucrose ratio due to increased crosslinking, whereas mechanical Tg decreased with increased XG content due to network formation.  相似文献   

15.
16.
17.
18.
The physical properties of a composite film prepared from barley bran protein and gelatin (BBG) were investigated. Tensile strength (TS) and elongation at break (E) values of the BBG film decreased as barley bran protein content increased. TS increased with increasing gelatin content, but E values decreased. The optimal conditions for the preparation of the BBG film were 3 g barley bran protein, 3 g gelatin, and 1 g sorbitol in 100 mL film-forming solution. In order to inhibit the growth of pathogenic bacteria, a BBG film containing grapefruit seed extract (GSE) was prepared. After 15 days of storage, populations of Escherichia coli O157:H7 and Listeria monocytogenes inoculated on salmon packaged with the BBG film containing GSE decreased by 0.53 and 0.50 log CFU/g, respectively, compared to the control. Also, packing salmon with the BBG film containing GSE decreased the peroxide value and thiobarbituric acid value by 23.0% and 23.4%, respectively.  相似文献   

19.
Abstract: Alpha‐lactalbumin is an important dairy protein ingredient, and has been widely used in high‐protein foods such as infant formula and nutritional bars for its nutritional and functional properties. The purpose of this study was to investigate the moisture‐induced aggregation of alpha‐lactalbumin in premixed protein dough model systems, and to illustrate the effects of temperature, cations, and pH on the progress of protein aggregation. Our results suggested that storage temperature was a critical factor for protein aggregation in model systems, and the formation of protein aggregates became faster with increases in storage temperature. Calcium significantly improved the thermal stability of alpha‐lactalbumin and slowed down the formation of protein aggregates. The increases in pH accelerated the aggregation of alpha‐lactalbumin. Our results also suggested that the formation of intermolecular disulfide bonds together with noncovalent interactions are the main mechanisms resulting in the moisture‐induced aggregation of alpha‐lactalbumin in model systems. Practical Application: Alpha‐lactalbumin is an important dairy protein ingredient, and has been widely used in high‐protein foods such as infant formula and nutritional bars for its nutritional and functional properties. Our results suggested low storage temperature, the presence of calcium and low pH condition can make high‐protein food products containing alpha‐lactalbumin more stable.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号