首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of muscle types and washing on the properties of a protein-based film from round scad (Decapterus maruadsi) mince were investigated. Washing resulted in an increase in the protein content with a coincidental decrease in the fat content of mince, especially from whole muscle and dark muscle. Among all types of muscle (ordinary, dark and whole muscle), the ordinary muscle rendered the film with the highest tensile strength (TS) (p < 0.05). TS of films from washed mince was greater than that of films prepared from unwashed mince for the same type of muscle used (p < 0.05). Nevertheless, the water vapour permeability (WVP) of films from unwashed mince was higher than that of films prepared from washed mince (p < 0.05). Films from washed mince had higher solubility but lower protein solubility than those from unwashed mince (p < 0.05). Regardless of washing, films from ordinary muscle showed the highest L-value (p < 0.05). However, films prepared from dark muscle were more yellowish than those prepared from other muscles, as evidenced by the greater b-value. Films from round scad mince and washed mince had excellent barrier properties to UV light at the wavelength of 200–280 nm. Generally, films from round scad mince had a lower preventive effect on visible light transmission than had those from unwashed mince. Among films from all muscles, those prepared from dark muscle exhibited the highest barrier to visible light transmission (p < 0.05). Therefore, the properties of films from round scad meat were governed by muscle type as well as by washing.  相似文献   

2.
Effects of the ratios of fish myofibrillar protein (FMP) from bigeye snapper (Priacanthus tayenus) to polyvinyl alcohol (PVA) (FMP:PVA; 10:0, 8:2, 6:4, 5:5, 4:6, 2:8, 0:10) and pH levels (3 and 11) on the properties of resulting films were investigated. Both tensile strength (TS) and elongation at break (EAB) of films increased with increasing PVA content (p < 0.05). When PVA was incorporated up to 40%, films prepared at pH 11 had the higher TS than did those prepared at pH 3 (p < 0.05). However, as PVA content was greater than 40%, films prepared at pH 3 exhibited the higher TS than did those prepared at pH 11 (p < 0.05). Water vapor permeability (WVP) of the films prepared at pH 3 increased when PVA content increased up to 40% and decreased with further increases in PVA content (p < 0.05). PVA films had the higher TS, EAB and WVP than did FMP films and FMP/PVA blend films prepared at both pHs. Films exhibited the increased L∗ and a∗ values but decreased b∗ value with increasing PVA content at both pHs. Films prepared at pH 11 showed higher b∗ value than did those prepared at pH 3 when PVA content was greater than 40% (p < 0.05). FMP/PVA blend films exhibited the negligible transmission to the UV light. At pH 3, light transmission of the films increased as PVA content increased (p < 0.05). At all FMP/PVA ratios, films prepared at pH 11 were less transparent than those prepared at pH 3 (p < 0.05). Therefore, blend composition and pH level influenced the properties of FMP/PVA blend films.  相似文献   

3.
The properties of film prepared from round scad (Decapterus maruadsi) stored in ice for different times were investigated. Degradation of myosin heavy chain (MHC) was more pronounced with the coincidental increase in total volatile base and trimethylamine contents as the storage time increased (P<0.05). Regardless of storage time, no changes in tensile strength (TS) and elongation at break (EAB) of resulting films prepared from unwashed mince were observed (P>0.05). For the films prepared from washed mince, TS decreased, whereas EAB increased when the storage time of fish increased (P<0.05). However, films prepared from washed mince showed the greater mechanical properties with the lower film solubility and protein solubility than did those from mince (P<0.05). Generally, films prepared from fish stored in ice for a longer time became less transparent, darker and more yellowish. The electrophoretic study revealed that similar protein patterns were observed between films, irrespective of storage time of fish and washing. Therefore, the quality of fish did not show the marked impact on the mechanical property of the resulting films, while washing likely affected the film forming ability.  相似文献   

4.
Properties of film from cuttlefish (Sepia pharaonis) ventral skin gelatin without and with partial hydrolysis (1.2% degree of hydrolysis) incorporated with 1% ethanolic extract of cinnamon (CME), clove (CLE) and star anise (SAE) were determined. Films with different herb extracts (without and with oxidation) had higher tensile strength (TS) but lower elongation at break (EAB), compared with the control film (without addition of herb extracts) (p < 0.05). Lower water vapor permeability (WVP) and L-value but higher b- and ΔE-values were observed when the extracts were incorporated (p < 0.05). Electrophoretic study revealed that cross-linking was pronounced in films containing different herb extracts. Oxidized extracts yielded films with higher TS and WVP than those without oxidized herb extracts (p < 0.05). Generally, similar properties were noticeable for films from gelatin with and without partial hydrolysis. Nevertheless, higher mechanical properties were obtained for the latter. FTIR spectra indicated that protein–polyphenol interactions were involved in the film. Thermo-gravimetric analysis revealed that films incorporated with SAE or SAE with oxidation (OSAE) exhibited lower heat susceptibility and weight loss in the temperature range of 50–600 °C, compared with control film. Films with SAE and OSAE had smoother surface for gelatin without hydrolysis; however, coarser surface was observed in film from gelatin with partial hydrolysis. Thus, the incorporation of different herb extracts directly affected the properties of film from cuttlefish skin gelatin with and without hydrolysis.  相似文献   

5.
Properties of film from cuttlefish (Sepia pharaonis) ventral skin gelatin without and with partial hydrolysis (1.2% degree of hydrolysis), as influenced by H2O2 and Fenton’s reagent at different levels, were investigated. Films treated with H2O2 (0.01–0.04 M) and Fenton’s reagent [H2O2 (0.01–0.04 M) + FeSO4 (0.001–0.004 M)] had higher tensile strengths (TS) but similar or lower elongations at break (EAB), compared with the control film (p < 0.05). Slight differences in water vapour permeability (WVP) were observed for all films. Films treated with Fenton’s reagent had a lower L-value but higher a-, b- and ΔE-values, while films treated with H2O2 had lower b-values (p < 0.05), than had the control film. Cross-linking was pronounced in films treated with H2O2 or Fenton’s reagent and was associated with increased heat stability. Films treated with Fenton’s reagent had the lowest solubility in water (p < 0.05). However, fragmentation more likely took place when Fenton’s reagent (at a higher level) was used. Generally, similar results were noticeable between films from gelatin with and without partial hydrolysis. Thus, H2O2 and Fenton’s reagent directly affected the properties of film from cuttlefish skin gelatin, regardless of hydrolysis.  相似文献   

6.
Properties of porcine plasma protein-based film incorporated with tannic acid, caffeic acid and ferulic acid at different concentrations (1–3% (w/w) of protein content) were studied. Film-forming solution (FFS) containing 3% protein (w/v) and 70% glycerol (w/w of protein content) was preheated at 70 °C for 30 min and adjusted pH to 10 followed by the addition of phenols and film casting. Tensile strength (TS) of resulting film increased by 123.3, 194.3 and 19.5% and elongation at break (EAB) increased by 71.1, 86.3 and 10.2%, respectively, compared with the control film, when tannic acid, caffeic acid and ferulic acid at a level of 3% was added. The use of all phenolic compounds slightly increased water vapor permeability (WVP) of resulting films (p < 0.05). The increases in a- and b-values of films were observed as the higher concentrations of tannic acid and caffeic acid were used. This was associated with the lowered transparency of resulting films. FFS containing 3% caffeic acid with prior oxygenation, especially with pH 10, yielded the film with increased TS but lowered EAB (p < 0.05). Oxygenation of FFS was associated with the lower L-value and higher a-value of resulting films. Therefore, phenolic compounds could be used as natural cross-linkers which affected the properties of porcine plasma protein-based film differently.  相似文献   

7.
Properties of protein-based film from fish skin gelatin incorporated with different citrus essential oils, including bergamot, kaffir lime, lemon and lime (50% based on protein) in the presence of 20% and 30% glycerol were investigated. Films containing 20% glycerol had higher tensile strength (TS) but lower elongation at break (EAB), compared with those prepared with 30% glycerol, regardless of essential oils incorporated (< 0.05). Films incorporated with essential oils, especially from lime, at both glycerol levels showed the lower TS but higher EAB than the control films (without incorporated essential oil) (< 0.05). Water vapour permeability (WVP) of films containing essential oils was lower than that of control films for both glycerol levels (< 0.05). Films with essential oils had varying ΔE* (total colour difference), where the highest value was observed in that added with bergamot essential oil (< 0.05). Higher glycerol content increased EAB and WVP but decreased TS of films. Fourier transforms infrared (FTIR) spectra indicated that films added with essential oils exhibited higher hydrophobicity with higher amplitude at wavenumber of 2874–2926 cm−1 and 1731–1742 cm−1 than control film. Film incorporated with essential oils exhibited slightly lower thermal degradation resistance, compared to the control film. Varying effect of essential oil on thermal degradation temperature and weight loss was noticeable, but all films prepared using 20% glycerol had higher thermal degradation temperature with lower weight loss, compared with those containing 30% glycerol. Films added with all types of essential oils had rough cross-section, compared with control films, irrespective of glycerol levels. However, smooth surface was observed in all film samples. Film incorporated with lemon essential oil showed the highest ABTS radical scavenging activity and ferric reducing antioxidant power (FRAP) (p < 0.05), while the other films had lower activity. Thus, the incorporation of different essential oils and glycerol levels directly affected the properties of gelatin-based film from fish skin.  相似文献   

8.
The effects of frozen storage at −18 °C on the chemical and sensory qualities of fish fingers produced from unwashed and washed mirror carp (Cyprinus carpio) mince were investigated. The amounts of moisture, crude protein, lipid, crude ash, ω3 polyunsaturated fatty acids (PUFA ω3), and ω6 polyunsaturated fatty acids (PUFA ω6) in fish fingers produced from unwashed mince (UWF) were found to be 68.50%, 15.5%, 6.00%, 2.20% 2.31%, and 55.2%, respectively, while they were found to be 70.23%, 10.8%, 2.14%, 1.80%, 2.28%, and 54.6%, respectively, in carp fingers produced from washed mince (WF). The thiobarbituric acid value (TBA, mg malonaldehyde/kg) was found to be significantly higher in mince of WF than in mince of UWF and increased significantly during frozen storage in both the mince of UWF and WF (p < 0.05). A significant decrease in pH was obtained throughout the washing treatment (p < 0.05). There were no significant differences of pH in either the mince of UWF or WF between the beginning and end of the storage periods (p > 0.05), whereas a sharp increase was observed in the fourth month in both groups. The protein solubilities of the mince of both UWF and WF decreased significantly throughout the storage periods (p < 0.05). Sensory parameters of colour, odour, flavour, and general acceptability for both groups decreased during the frozen storage period (p < 0.05) but were still within acceptable limits. It was also concluded that mirror carp was a good source for fish fingers and that product could be stored for five months in a frozen state without undesirable changes of sensory and chemical qualities.  相似文献   

9.
The effects of washing with hydrogen peroxide (H2O2) and sodium hypochlorite (NaOCl) solutions on the gel-forming ability and physicochemical properties of surimi produced from bigeye snapper (Priacanthus tayenus), stored in ice for up to 14 days, were investigated. Generally, pH and the trichloroacetic acid (TCA)-soluble peptide content of washed mince varied, depending on the type of oxidizing agent and storage time of the fish. With increasing time of storage, the pHs of water- and H2O2-washed mince were lower than that of NaOCl-washed mince (P < 0.05). However, no differences in the TCA-soluble peptide contents of the resulting mince washed with any media were observed (P > 0.05). Washing with 20 ppm NaOCl resulted in the highest increase in both the breaking force and the deformation of mince from fish stored in ice for all the times studied (P < 0.05). Natural actomyosin (NAM) extracted from NaOCl-washed mince had higher surface hydrophobicity and disulfide bond (SS) content than that of water-washed mince (P < 0.05). With no effect on Ca2+-, Mg2+-, or Mg2+–Ca2+-ATPase activities, NaOCl washing resulted in an increase in Mg2+–EGTA-ATPase activity of NAM (P < 0.05). The results suggested that washing mince with the appropriate type and concentration of oxidizing agent can improve the gelling ability of surimi, particularly from low quality fish.  相似文献   

10.
Impacts of microbial transglutaminase (MTGase) (0–0.6 units/g sample) on gel properties of Indian mackerel unwashed mince, surimi and protein isolates with and without prewashing were studied. Generally, lower myoglobin and lipid contents were found in protein isolate with and without prewashing, compared to those of unwashed mince and surimi (P < 0.05). Protein isolate had the decreased Ca2+-ATPase and protein solubility, indicating protein denaturation. When MTGase was incorporated, breaking force and deformation of all gels markedly increased, especially as MTGase levels increased (P < 0.05). At the same MTGase level, gel from protein isolate with prewashing exhibited the highest breaking force and deformation (P < 0.05). The addition of MTGase could lower the expressible moisture content of most gels. No change in whiteness of gel was observed with the addition of MTGase (P > 0.05), but gel from protein isolate gels had decreased whiteness as MTGase at high level was added. The microstructure of protein isolate gels without prewashing showed a similar network to unwashed mince gels, whilst a similar network was observed between surimi gel and gel from protein isolate with prewashing. Nevertheless, a larger void was noticeable in gels from protein isolates. All gels incorporated with MTGase (0.6 units/g) showed a slightly denser network than those without MTGase. Thus, gel with improved properties could be obtained from protein isolate from Indian mackerel with added MTGase.  相似文献   

11.
Properties of film from cuttlefish (Sepia pharaonis) ventral skin gelatin with different degree of hydrolysis (DH: 0.40, 0.80 and 1.20%) added with glycerol as plasticizer at various levels (10, 15 and 20%, based on protein) were investigated. Films prepared from gelatin with all DH had the lower tensile strength (TS) and elongation at break (EAB) but higher water vapor permeability (WVP), compared with the control film (without hydrolysis) (p < 0.05). At the same glycerol content, both TS and EAB decreased, while WVP increased (p < 0.05) with increasing %DH. At the same DH, TS generally decreased as glycerol content increased (p < 0.05), however glycerol content had no effect on EAB when gelatins with 0.80 and 1.20% DH were used (p > 0.05). DH and glycerol content had no marked impact on color and the difference in color (ΔE) of resulting films. Electrophoretic study revealed that degradation of gelatin and their corresponding films was more pronounced with increased %DH, resulting in the lower mechanical properties of films. Based on FTIR spectra, with the increasing %DH as well as glycerol content, higher amplitudes for amide-A and amide-B peaks were observed, compared with film from gelatin without hydrolysis (control film) due to the increased –NH2 group caused by hydrolysis and the lower interaction of –NH2 group in the presence of higher glycerol. Thermo-gravimetric analysis indicated that film prepared from gelatin with 1.20% DH exhibited the higher heat susceptibility and weight loss in the temperature range of 50–600 °C, compared with control film. Thus, both chain length of gelatin and glycerol content directly affected the properties of cuttlefish skin gelatin films.  相似文献   

12.
Lipid oxidation and fishy odour development in protein hydrolysate from fresh and ice-stored Nile tilapia (Oreochromis niloticus) were investigated. During iced storage of 18 days, heme iron content decreased with a concomitant increase in non-heme iron content (P < 0.05). Peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) values increased. Phospholipid content decreased with a corresponding increase in free fatty acid content. The results suggested that lipid hydrolysis and oxidation took place during storage. When protein hydrolysates were produced from fresh and 18 days ice-stored Nile tilapia muscle, higher lipid oxidation and fishy odour/flavour along with higher amount volatile compounds were obtained in hydrolysate for unfresh sample (P < 0.05). However, the addition of mixed antioxidants during hydrolysis process markedly lowered lipid oxidation, b, ΔC, ΔE values, fishy odour/flavour as well as the formation of volatile compounds in the resulting hydrolysates prepared from both fresh and unfresh samples. Therefore, hydrolysate from Nile tilapia muscle with reduced fishy odour and lighter colour could be prepared by using fresh fish and incorporation of mixed antioxidants during hydrolysis.  相似文献   

13.
Antioxidative activities of phenolic compounds (caffeic acid, gallic acid and tannic acid; 200 ppm) in washed mince (pH 6), with added myoglobin (Mb) and haemoglobin (Hb), from bighead carp (Hypophthalmichthys nobilis), during 9 days of iced storage, were studied. Tannic acid exhibited the preventive effect on discolouration of washed mince containing Mb or Hb during storage (P < 0.05). High peroxide value (PV) was found and large amount of, thiobarbituric acid-reactive substances (TBARS) and hexanal were formed in washed mince containing haem proteins, especially Hb. As determined by apo Streptococcal haem-associated protein, Hb had the lower haem affinity than Mb. Phenolic compounds, especially caffeic acid and gallic acid, could lower lipid oxidation induced by Mb or Hb throughout storage (P < 0.05). Prevention of haem release, as well as inhibition of lipid oxidation induced by haem proteins with selected phenolic compounds, should be an alternative means in lowering discolouration and lipid oxidation in fish muscle.  相似文献   

14.
The effects of electrical stimulation (90 V) 20 min post mortem on meat quality and muscle fibre types of four age group camels (1–3, 4–6, 7–9, 10–12 years) camels were assessed. Quality of the Longissimus thoracis at 1 and 7 days post mortem ageing was evaluated using shear force, pH, sarcomere length, myofibrillar fragmentation index, expressed juice, cooking loss and L, a, b colour values. Age of camel and electrical stimulation had a significant effect on meat quality of L. thoracis. Electrical stimulation resulted in a significantly (P < 0.05) more rapid pH fall in muscle during the first 24 h after slaughter. Muscles from electrically-stimulated carcasses had significantly (P < 0.05) lower pH values, longer sarcomeres, lower shear force value, higher expressed juice and myofibrillar fragmentation index than those from non-stimulated ones. Electrically-stimulated meat was significantly (P < 0.05) lighter in colour than non-stimulated based on L value. Muscles of 1–3 year camels had a significantly (P < 0.05) lower shear force value, and pH, but longer sarcomere, and higher myofibrillar fragmentation index, expressed juice, and lightness colour (L) than those of the 10–12 years camels. The proportions of Type I, Type IIA and Type IIB were 25.0, 41.1 and 33.6%, respectively were found in camel meat. Muscle samples from 1–3 year camels had significantly (P < 0.05) higher Type I and lower Type IIB fibres compared to those from 10–12 year camel samples. These results indicated that age and ES had a significant effect on camel meat quality.  相似文献   

15.
The properties of porcine plasma protein-based films as influenced by some factors and pretreatment were studied. Both protein concentrations (20 and 30 g L−1) and glycerol contents (50, 60 and 70 g/100 g protein) had the impact on film properties. Film prepared from film-forming solution (FFS) containing protein (30 g L−1) and glycerol (60 g/100 g protein) possessed the highest tensile strength (TS) (2.48 MPa), while that containing protein (30 g L−1) and glycerol (70 g/100 g protein) exhibited the greatest elongation at break (EAB) (18.33%). Protein and glycerol contents affected water vapor permeability (WVP) and transparency of the resulting films. No differences in protein solubility were found among all films (p > 0.05). Pretreatment of FFS by adjusting pH (2-11) and heating at different temperatures (40, 55 and 70 °C) on the properties of the resulting films was investigated. TS and EAB became higher but WVP decreased with decreasing or increasing pH value of FFS. Heat treatment of FFS with pH 3 and 10 had no impact on TS of the resulting film (p > 0.05). On the other hand, EAB and WVP increased with increasing temperature of FFS at both pHs (p < 0.05).  相似文献   

16.
Composition, functional properties and antioxidative activity of a protein hydrolysate prepared from defatted round scad (Decapterus maruadsi) mince, using Flavourzyme, with a degree of hydrolysis (DH) of 60%, were determined. The protein hydrolysate had a high protein content (48.0%) and a high ash content (24.56%). It was brownish yellow in colour (L = 58.00, a = 8.38, b = 28.32). The protein hydrolysate contained a high amount of essential amino acids (48.04%) and had arginine and lysine as the dominant amino acids. Na+ was the predominant mineral in the hydrolysate. The protein hydrolysate had an excellent solubility (99%) and possessed interfacial properties, which were governed by their concentrations. The emulsifying activity index of the protein hydrolysate decreased with increasing concentration (p < 0.05). Conversely, the foaming abilities increased as the hydrolysate concentrations increased (p < 0.05). During storage at 25 °C and 4 °C for 6 weeks, the antioxidative activities and the solubility of round scad protein hydrolysate slightly decreased (p < 0.05). Yellowness (b-value) of the protein hydrolysate became more intense as the storage time increased but the rate of increase was more pronounced at 25 °C than at 4 °C.  相似文献   

17.
BACKGROUND: Generally, biodegradable films from fish muscle protein become yellow after preparation. This discolouration is more likely associated with lipid oxidation and can be prevented by minimising the oxidation in the films. Thus, the effects of oxygen and antioxidants on lipid oxidation and yellow discolouration of film from red tilapia mince during storage were investigated. RESULTS: Both films prepared at pH 3 and 11, and kept under atmosphere containing 100% N2 had the lowest TBARS value with the concomitant lowest b* and ΔE* values during storage (P < 0.05), when compared with other films kept in air and a 100% O2 atmosphere. Films prepared at pH 3 and incorporated with antioxidants (Trolox and catechin) at all levels (100, 200 and 400 mg L?1 film‐forming solution) had the lowest TBARS value, b* and ΔE* values during storage, indicating the retardation of lipid oxidation and yellow discolouration in films. Nevertheless, films prepared at pH 11 had no difference in TBARS values, in comparison with control film, regardless of antioxidant incorporation. Coincidentally, increases in b* and ΔE* values were observed in those films. CONCLUSIONS: Lipid oxidation was the main factor inducing yellow discolouration of film exposed to oxygen and the incorporation of antioxidants in film prepared at acidic pH was able to prevent yellow discolouration of resulting film. Copyright © 2012 Society of Chemical Industry  相似文献   

18.
The influences of three root essential oils (ginger, turmeric and plai) at different levels (25%, 50% and 100%, based on protein content) on properties and antioxidative activity of fish skin gelatin-based film were investigated. Films incorporated with all essential oils showed the lower tensile strength (TS) but higher elongation at break (EAB) with increasing amount of essential oils, compared with the control film (without oil incorporated), regardless of types of essential oil (p < 0.05). Water vapor permeability (WVP) of films containing essential oils decreased as the amount of essential oils increased (p < 0.05). Decreases in L*-value and increases in b*-, ΔE*- and transparency value were observed with increasing amount of essential oils incorporated (p < 0.05). FTIR spectra indicated that films added with essential oils, especially from plai root, exhibited higher hydrophobicity than the control film, as evidenced by higher amplitude at wavenunber of 2877–2922 cm−1 and 1732 cm−1. Lower degradation temperature was obtained in films containing essential oils. Microstructural study revealed that bilayer films could be formed when essential oils at level above 50% were incorporated. Film incorporated with plai and turmeric essential oils showed the higher DPPH and ABTS radical scavenging activity, respectively, (p < 0.05), compared with the control film and ginger essential oil added film. Thus, the incorporation of root essential oils directly affected properties of fish skin gelatin-based film, depending on types and levels incorporated.  相似文献   

19.
Carotenoid contents of extruded and non-extruded flours of Papua New Guinean and Australian sweetpotato cultivars were studied, using spectrophotometry and high performance liquid chromatography (HPLC). The cultivars differed (p < 0.05) in their total carotenoid and β-carotene contents, and the Original Beauregard cultivar had the highest total carotenoid and β-carotene contents among the cultivars. The spectrophotometry (84–1720 μg/g solids) method generally over-estimated the total carotenoid content compared to the more specific HPLC (23–355 μg/g solids) method. Extrusion significantly (p < 0.05) decreased the ΔL Hunter colour values, while the Δa, Δb, total colour change (ΔE), chroma (CR), and browning indices (BI) increased. With the extruder and screw configuration used, extrusion at 40% moisture and 300 rpm screw speed retained carotenoid maximally at more than 80%. This study reports, for the first time, carotenoids of flours from south Pacific sweetpotato cultivars, and carotenoid retention during extrusion.  相似文献   

20.
Starch-based films have promising application on food packaging, because of their environmental appeal, low cost, flexibility and transparency. Nevertheless, their mechanical and moisture barrier properties should be improved. The aim of this work was to enhance these properties by reinforcing the films with cellulose fibers. Besides, the influences of both the solubility coefficient of water in the films (β) and the diffusion coefficient of water vapor through the films (Dw) on the films' water vapor permeability (Kw) were investigated. Films were prepared by the so-called casting technique, from film-forming suspensions of cassava starch, cellulose fibers (1.2 mm long and 0.1 mm of diameter), glycerol and water. The influence of fibers addition on Kw was determined at three relative humidity gradient ranges, ΔRH (2–33%, 33–64% and 64–90%). Films reinforced with cellulose fibers showed higher tensile strength and lower deformation capacity, and presented lower Kw than films without fibers. Kw showed strong dependency of β and Dw, presenting values up to 2–3 times greater at ΔRH = 64–90% than at ΔRH = 33–64%, depending on the film formulation. Therefore, adding cellulose fibers to starch-based films is a viable alternative to improve their mechanical and water barrier properties. Besides, this work showed the importance of determining film's water vapor permeability simulating the real environmental conditions the film will be used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号