首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了200、300、400℃温度下N18(NZ2)合金的循环变形行为,同时研究了室温和400℃低周疲劳行为.结果表明:N18(NZ2)合金低周疲劳寿命Nf随着塑性应变范围△εp的增加而降低,并遵循Coffin-Manson关系:Nβf△εp=C;N18(NZ2)合金在400℃高温下,其循环滞后回线出现锯齿状波形,即出现Portevin-LeChatelier效应.且在200、300、400 ℃下,合金表现出与常温下不同的循环特性,呈现出一致循环硬化的现象;在高温,N18(NZ2)合金疲劳断口局部出现韧窝型断裂,并出现细小的二次裂纹.大量二次裂纹的存在是400℃疲劳断口的主要特征.  相似文献   

2.
Al-Zn-Mg-Sc-Zr合金的热变形行为及加工图   总被引:2,自引:0,他引:2  
在Gleeble-1500热模拟试验机上对Al-5.5Zn-1.5Mg-0.2Sc-0.1Zr铝合金进行高温等温压缩实验,研究该合金在变形温度为300~500℃、应变速率为0.01~10s-1条件下的流变行为,建立合金高温变形的本构方程和加工图,采用电子背散射衍射(EBSD)分析变形过程中合金的组织特征.结果表明流变应力随变形温度的升高而降低;当应变速率ε=10s-1,变形温度为300~500℃时,合金发生了动态再结晶.Al-5.5Zn-1.5Mg-0.2Sc-0.1Zr合金的高温流变行为可用Zener-Hollomon参数描述.在热变形过程中,随着真应变增加,合金的变形失稳区域增大.该合金适宜的变形条件如下变形温度300~360℃、应变速率0.01~0.32s-1,或变形温度380~500℃、应变速率0.56~10s-1.  相似文献   

3.
7A52铝合金热加工过程中高温压缩变形行为   总被引:9,自引:0,他引:9  
采用圆柱试样在Gleeble-1500热模拟机上进行高温压缩变形模拟实验,研究了7A52铝合金在高温塑性变形过程中流变行为。实验结果表明,合金高温压缩变形时的流变应力随变形温度的升高而减小,随变形速率的提高而增大。热变形条件下流变应力σ、应变速率ε.和变形温度T之间满足一定的关系式。研究指出,合金适宜的热加工温度为400℃~420℃。  相似文献   

4.
通过在Gleeble-l500热模拟试验机上进行等温热压缩试验,研究2E12铝合金在变形温度为300~500℃和应变速率为0.0l~l0 s-1条件下的流变应力行为,计算、推导出用包含Arrhenius项的Zener-Hollomon参数描述2E12合金高温压缩流变行为的表达式,并分析形变热、变形温度和应变速率等参数对流变应力的影响规律。结果表明:应变速率和变形温度对2E12合金的流变应力影响显著,流变应力随着温度的升高而降低,随着应变速率的提高而增大;在ε≥1 s-1时,形变热导致流变应力降低,且幅度随着应变速率的增大而增大,随着变形温度的升高而降低。  相似文献   

5.
在Gleeble1500热模拟机上对连续挤压铜母线在应变速率为0.01~1.0 s-1、变形温度300~700℃条件下进行高温等温热压缩试验,并探讨了其高温流变应力行为.结果表明:当温度大于或等于500℃时,铜母线高温流变应力曲线显示出较为明显的稳态流变曲线特征,且为典型的单峰动态软化曲线;在温度小于500℃时,稳态流变曲线特征不明显,材料较难以进入稳态流变.变形温度越高或应变速率越低,动态软化曲线特征越明显.用Zener-Hollomon参数的双曲正弦函数形式能较好地描述铜母线高温变形时的流变应力行为,其热变形激活能Q经计算为205.445 kJ/mol,Z方程为:Z=εexp(205.445/RT).  相似文献   

6.
加载速率对20g钢高温断裂韧性的影响   总被引:1,自引:0,他引:1  
对20g钢高温断裂韧性随加载速率的变化规律进行了实验研究.在400℃和500℃下,分别测量了几种加载速率下20g钢的Ji值.实验结果表明:Ji值随应变速率的增大而有较大幅度的降低;在同一应变速率下,400℃时的Ji值小于500℃时的Ji值;400℃时裂纹扩展比500℃时更快.因此,当温度在400℃附近时更应注意避免超载.  相似文献   

7.
加载速度对20g钢高温断裂韧性的影响   总被引:1,自引:0,他引:1  
对20g钢高温断裂韧性随加载速率的变化规律进行了实验研究,在400℃和500℃下,分别测量了几种加载速率下20g钢的Ji值,实验结果表明:Ji值随应变速率的增大而有较大幅度的降低;在同一应变速率下,400℃时的Ji值小于500℃时的Ji值,400℃时裂纹扩展比500℃时更快,因此,当温度在400℃附近时更应注意避免超载。  相似文献   

8.
Al-4.7Mg-0.7Mn-0.1Zr-0.4Er合金高温变形行为   总被引:3,自引:1,他引:2  
在Gleeble 1500D热模拟仪上进行热压缩实验,研究Al-4.7Mg-0.7Mn-0.1Zr-0.4Er合金高温变形行为,变形温度为300~500℃,变形速率为0.001~10 s-1,变形后总应变量为0.7。变形温度高于400℃时,真应力-真应变曲线呈现稳态流变,在其他温度下变形真应力-真应变曲线表现为加工硬化。根据动态材料模型建立合金的加工图,在400~500℃和0.001~0.1 s-1变形时加工图上出现一个发生动态回复的峰区,相应的变形激活能为176 kJ/mol,大于纯铝的自扩散激活能,表明合金在该区域变形的机制是位错的交滑移。变形失稳区的组织特征是局部变形。  相似文献   

9.
在Gleeble-1500热模拟试验机上对Al-6.1Zn-2.8Mg-1.9Cu-0.25Cr铝合金进行高温等温压缩实验,研究该合金在变形温度为300 ~ 500℃、应变速率为0.01~1 s-1条件下的流变行为,建立合金高温变形的本构方程,采用TEM分析变形过程中合金的组织特征.结果表明:合金变形抗力随变形温度的升高而下降,随应变速率升高而增大.在360 ~400℃范围内变形时,合金组织仅发生动态回复,当变形温度高于400℃以后,合金热变形以动态再结晶为主.应变速率在0.01~1 s-1范围内,不影响合金的变形软化机制,但对合金亚结构的影响较大,随应变速率的增加,位错密度增加,亚晶尺寸减少.此合金适宜的变形条件为变形温度380 ~400℃、应变速率0.1 s-1.  相似文献   

10.
Mg-Gd-Y-Mn耐热镁合金的压缩变形行为研究   总被引:6,自引:4,他引:2  
采用Gleeble-1500热模拟机对Mg-Gd-Y-Mn稀土镁合金在温度为300~500℃、应变速率为0.001~1.0s-1、最大变形程度为60%的条件下,进行恒应变速率高温压缩模拟实验研究.分析了实验合金高温变形时流变应力与应变速率及变形温度之间的关系以及组织变化,计算了表观激活能及相应的应力指数,为选择这种合金的热变形加工条件提供了实验依据.结果表明:合金的稳态流变应力随应变速率的增大而增大,在恒应变速率条件下,合金的真应力水平随温度的升高而降低;在给定的变形条件下,计算得出的表观激活能和应力指数分别为200kJ·mol-1和5.1.根据实验分析,合金的热加工宜在400~500℃温度范围内进行.  相似文献   

11.
对高硅铝合金光谱标准样品在应变速率为0.01~1s-1、变形温度为350~500℃条件下的热压缩变形行为进行实验研究。结果表明:高硅铝合金热压缩变形中发生了明显的动态回复与动态再结晶,流变应力随应变速率的增加而增加,随温度的增加而降低;通过线性回归分析计算出高硅铝合金材料的应变硬化指数n以及变形激活能Q,获得了高硅铝合金高温条件下的流变应力本构方程;研究工艺参数(变形温度t、应变速率ε)对晶粒尺寸的影响,确定最佳工艺参数:t=400℃,ε=0.1s-1。  相似文献   

12.
Mg-Gd-Y-Zr耐热镁合金的压缩变形行为   总被引:15,自引:4,他引:15  
采用GLEEBLE-1500热模拟机对Mg-Gd-Y-Zr稀土镁合金在温度为300~500℃、应变速率为0.000 1~1.0 s-1、最大变形程度为50%的条件下,进行了恒应变速率高温压缩模拟实验研究,分析了实验合金高温变形时流变应力与应变速率及变形温度之间的关系以及组织变化,计算了塑性变形表观激活能及相应的应力指数,为选择这种合金的热变形加工条件提供实验依据.结果表明:合金的稳态流变应力随应变速率的增大而增大,在恒应变速率条件下,合金的真应力水平随温度的升高而降低;在给定的变形条件下,计算得出的塑性变形表观激活能和应力指数分别为260 kJ/mol和5.6.根据实验分析,合金的热加工宜在400~500℃温度范围内进行.  相似文献   

13.
Mg-Nd-Zn-Zr稀土镁合金的热变形行为   总被引:17,自引:6,他引:17  
采用GLEEBLE-1500热模拟机对Mg-Nd-Zn-Zr稀土镁合金在温度为250~450.℃、应变速率为0.002~0.100.s-1、最大变形程度为60%的条件下, 进行高温压缩模拟实验研究. 分析了实验合金在高温变形时的流变应力和应变速率及变形温度之间的关系, 计算了变形激活能和应力指数, 并研究了在热压缩过程中组织的变化, 为确定该稀土镁合金的挤压温度提供了实验依据. 结果表明: 合金的峰值流变应力随应变速率的增大而增加, 随温度的升高而降低; 合金的变形激活能在300~400.℃内变化不大, 而在400~450.℃时增加很大; 根据实验分析认为该稀土镁合金挤压温度定在350~400.℃左右为宜; 在350.℃左右顺利挤出的实验合金有很好的力学性能: σb=275.5.MPa, δ=13.5%.  相似文献   

14.
采用6种不同预热温度对3Cr2W8VSr新型压铸模具钢进行预热处理,并进行了高温磨损性能和热疲劳性能的测试分析。结果表明:当预热温度高于250℃时,模具钢的高温磨损性能和热疲劳性能明显下降。与250℃预热相比,预热温度为350℃时模具钢在500℃高温磨损试验后磨损体积增大9×10-3mm3,在1000次20~500℃冷热循环后热疲劳裂纹级别从3级变为8级。3Cr2W8VSr新型压铸模具钢的预热温度不宜超过250℃。  相似文献   

15.
对铸态和均匀化退火的AZ91镁合金进行不同温度、不同应变速率的热模拟试验,研究了其高温热塑性.结果表明,与铸态合金相比,经均匀化退火的AZ91镁合金断面收缩率有较大提高,抗拉强度明显降低;当变形温度在300℃~420℃时,断面收缩率先增大后减小,在380℃~400℃之间达到最大值,抗拉强度趋势呈近似直线递减.在380℃~400℃范围内变形,塑性最好.均匀化处理的合金,在应变速率为0.05 s-1、0.5 s-1、5 s-1时进行热模拟,断面收缩率在变形温度为380℃时达到最大.在不同变形温度下,应变速率减小,断面收缩率增大,抗拉强度降低,塑性提高.  相似文献   

16.
采用Gleeble-1500热模拟试验机对3003铝合金进行变形温度为300~500℃,应变速率为0.01~10.0 s-1高温等温压缩实验,利用Zener-Hollomon参数模型建立了合金热变形峰值流变应力本构模型。结合显微组织观察分析,3003铝合金热变形软化机制主要是动态再结晶,随着ln Z值的减小,动态再结晶进行得越充分;ln Z值较大时,3003铝合金热变形过程中的软化机制主要以动态回复为主,据此获得合金发生动态再结晶的临界条件为T≥400℃,ln Z≤31.98。由应变硬化速率计算合金发生动态再结晶的临界应变为εεc=0.00532ln Z-0.12452,其大小与Z参数成正比关系。  相似文献   

17.
对不同工艺处理的铝硅合金ZAlSi7Cu4用自约束型热疲劳实验机进行20 300℃、20 350℃和20 400℃的热循环试验,研究不同处理工艺对该材料热疲劳性能的影响及不同温度幅对裂纹生长的影响。通过光学显微镜和扫描电镜观察试样的热疲劳裂纹形貌,研究合金热疲劳损伤机制。结果表明:该合金经过T6处理后比其他两种方式处理的合金具有更好的热疲劳性能;颗粒的位向会影响裂纹的扩展路径;在下限温度不变的情况下,随着上限温度的提高,ZAlSi7Cu4的3种状态合金的寿命都缩短。当下限温度为20℃时,合金在上限温度为300~350℃区间内的温度敏感性高于其在上限温度为350~400℃区间内的温度敏感性。  相似文献   

18.
在Gleeble1500热模拟机上对直径10 mm,长度为12 mm的AZ31样品进行高温压缩试验,试样的加热温度在250~400℃,应变速率在0.01~1 s-1。研究了材料在不同温度及应变速率下的组织特征,探讨镁合金材料在高温压缩下的成形机制。结果表明:材料在不同条件下的组织演变规律与材料的高温变形行为密切相关;在300℃以上AZ31的塑性变形较好,但变形温度在300~350℃时,材料的变形则需要采用较高的应变率,反之AZ31合金的塑性明显降低。  相似文献   

19.
采用Gleeble-1500型热模拟试验机进行高温压缩实验,结合连续挤压工艺制定热压缩实验方案,研究铝锶合金高温塑性变形行为,分析变形温度、应变速率对铝锶合金热变形过程中流变应力和Al_4Sr相形态的影响,并采用线性回归的方法建立铝锶合金高温下的本构方程。结果表明:铝锶合金的热塑性变形软化机制以动态回复为主;在热变形过程中流变应力随变形温度的升高而减小,随应变速率的增大而增大;变形温度为400℃时Al_4Sr相破裂严重,而当温度为500℃时Al_4Sr相具有韧性而易于弯曲;可用包含Zener-Hollomon参数的Arrhenius双曲正弦模型描述其热变形行为。  相似文献   

20.
在不同变形温度(T=850~1050℃)和不同应变速率(ε觶=0.001~5s~(-1))下采用Gleeble~(-1)500D热模拟试验机对热等静压态TC4钛合金进行了高温热压缩试验,分析了真应力-真应变曲线特征及热变形参数对显微组织的影响,建立适用于热等静压态TC4钛合金高温流动行为的Arrhenius方程及DMM(动态材料模型)加工图。结果表明:峰值应力随应变速率的增大及变形温度的降低而增大;显微组织随变形温度升高发生马氏体相变,随应变速率增大,β相析出次生α'相,且T=900℃、ε觶=0.01s~(-1)时获得(α+β)双态组织,表明该条件能够改善材料加工性能。误差分析表明,峰值应力计算值与试验值平均相对误差绝对值仅6.77%,证明建立的本构方程能够准确预测材料高温变形时的流动应力。加工图分析表明材料流动失稳区为T=850~950℃、ε觶0.6 s~(-1),最佳加工区间为T=850~950℃、ε觶=0.01~0.1s~(-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号