首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The binational Great Lakes Water Quality Agreement (GLWQA) revised Lake Erie’s phosphorus (P) loading targets, including a 40% western and central basin total P (TP) load reduction from 2008 levels. Because the Detroit and Maumee River loads are roughly equal and contribute almost 90% of the TP load to the western basin and 54% to the whole lake, they have drawn significant policy attention. The Maumee is the primary driver of western basin harmful algal blooms, and the Detroit and Maumee rivers are key drivers of central basin hypoxia and overall western and central basin eutrophication. So, accurate estimates of those loads are particularly important. While daily measurements constrain Maumee load estimates, complex flows near the Detroit River mouth, along with varying Lake Erie water levels and corresponding back flows, make measurements there a questionable representation of loading conditions. Because of this, the Detroit River load is generally estimated by adding loads from Lake Huron to those from the watersheds of the St. Clair and Detroit rivers and Lake St. Clair. However, recent research showed the load from Lake Huron has been significantly underestimated. Herein, I compare different load estimates from Lake Huron and the Detroit River, justify revised higher loads from Lake Huron with a historical reconstruction, and discuss the implications for Lake Erie models and loading targets.  相似文献   

2.
The Canada-U.S. State of the Strait Conference is a biennial forum with a 22-year history of assessing ecosystem status and providing advice to improve research, monitoring, and management of the Detroit River and western Lake Erie. The 2019 conference focused on assessing ecosystem health based on 61 indicators. Although there has been considerable improvement in the Detroit River since the 1960s, much additional cleanup is needed to restore ecosystem health. Western Lake Erie is now at risk of crossing several potential tipping points caused by the interactions of a variety of drivers and their stresses. This assessment identified eight environmental and natural resource challenges: climate change; population growth/transportation expansion/land use changes; chemicals of concern; human health/environmental justice; aquatic invasive species; habitat loss/degradation; nonpoint source pollution; and eutrophication/harmful algal blooms. Specific recommendations for addressing each challenge were also made. Climate change is the most pressing environmental challenge of our time and considered a “threat multiplier” whereby warmer, wetter, and more extreme climatic conditions amplify other threats such as poor air quality effects on vulnerable residents, species changes, and nonpoint source runoff and combined sewer overflow events that contribute to eutrophication and can manifest as harmful algal blooms. Our assessment found that investments in monitoring and evaluation are insufficient and that the region's intellectual and environmental capital is not being leveraged sufficiently to address current challenges. Continued investment in this transnational network is essential to support ecosystem-based management.  相似文献   

3.
The Great Lakes Water Quality Agreement (GLWQA) established new Lake Erie phosphorus loading targets, including a 40% total phosphorus load reduction to its western and central basins. The Detroit and Maumee rivers’ loads are roughly equal and contribute about 90% of the load to the western basin and 54% to the whole lake. They are key drivers of central basin hypoxia and western basin algal production. So, accurate estimates of the Detroit River load are important. Direct measurement of that load near its mouth is difficult due to requiring real-time knowledge of flows around islands and the influence of Lake Erie’s seiches. Consequently, most estimates sum the loads to the St. Clair/Detroit River system. But this approach is complicated by uncertainties in the Lake Huron load and load retention in Lake St. Clair. Routine GLWQA reassessments will confirm or adjust over time the goals, loading targets, and approaches based on evolving information. So, there is a need to improve monitoring approaches that ensure accurate Detroit River loads. New approaches should take into account both the characteristics of this dynamic connecting channel and the uses of monitoring results: 1) determining the Detroit River loads to drive models, develop mass balances, set load reduction targets, and track progress; and 2) assessing the sources and processing of the loads to help guide reduction strategies. Herein, we review temporal and spatial variability in the St. Clair/Detroit River system, and suggest adjustments to monitoring that address those variabilities and both uses.  相似文献   

4.
As a result of increased harmful algal blooms and hypoxia in Lake Erie, the US and Canada revised their phosphorus loading targets under the 2012 Great Lakes Water Quality Agreement. The focus of this paper is the Detroit River and its watershed, a source of 25% of the total phosphorus (TP) load to Lake Erie. Its load declined 37% since 1998, due chiefly to improvements at the regional Great Lakes Water Authority Water Resource Recovery Facility (WRRF) in Detroit and phosphorus sequestered by zebra and quagga mussels in Lake Huron. In addition to the 54% of the load from Lake Huron, nonpoint sources contribute 57% of the TP load and 50% of the dissolved reactive phosphorus load, with the remaining balance from point sources. After Lake Huron, the largest source is the WRRF, which has already reduced its load by over 40%. Currently, loads from Lake Huron and further reductions from the WRRF are not part of the reduction strategy, therefore remaining watershed sources will need to decline by 72% to meet the Water Quality Agreement target - a daunting challenge. Because other urban sources are very small, most of the reduction would have to come from agriculturally-dominated lands. The most effective way to reduce those loads is to apply combinations of practices like cover crops, buffer strips, wetlands, and applying fertilizer below the soil surface on the lands with the highest phosphorus losses. However, our simulations suggest even extensive conservation on those lands may not be enough.  相似文献   

5.
Few active fish spawning grounds have been found in channels connecting the Great Lakes. Here, we describe one near Belle Isle in the Detroit River, part of the channel connecting lakes Huron and Erie. There, in 2005, we collected 1,573 fish eggs, cultured them, and identified the hatched larvae as walleye (Sander vitreus) and white sucker (Catostomus commersoni). Walleye spawning peaked during the week of April 12–19; white sucker spawning peaked on May 10. Average areal rate of egg deposition by walleye and white sucker at this spawning ground in 2005 was 346 and 25 eggs/m2, respectively. Our environmental measurements showed that bottom substrates on this spawning ground were largely sand, not optimal for fish reproduction. We hypothesize that reproduction of these fish at this spawning ground could be enhanced by adding rock and gravel substrates for protection of deposited fish eggs and suggest that reproduction by walleye in the Detroit River may add resilience to production of walleye in western Lake Erie.  相似文献   

6.
In the mid 1990s, growth and condition of lake whitefish (Coregonus clupeaformis) declined within commercial catches in Lake Michigan. However, underlying mechanisms responsible for the declines have not been thoroughly explored. Using fishery-independent survey data, we examined growth and relative abundance of adult whitefish over historical (1980–1990) and recent (1996–2005) time periods in three regions of Lake Michigan: north, mid, and south. Relative abundance was assessed from catch-per-unit-effort (CPUE) of independent surveys, and changes in growth conditions were evaluated using size-at-age estimates. Relative abundance increased in the mid and south regions between the two time periods and decreased in the north region. Length-at-age significantly declined between the two time periods in the north, mid, and south regions; the north region consistently had the lowest length-at-age. Condition also declined between the two time periods in each region. The decline in growth and condition coupled with increases in relative abundance suggest density-dependent mechanisms are contributing to the observed population changes in the south region. The north region does not appear to be regulated by density, suggesting density-independent mechanisms, such as food web changes, are influencing stocks. Changes in the mid region are likely from a mixture of increased lake whitefish abundance and food web changes. Using fishery-independent population data, our results suggest that multiple factors are potentially contributing differentially within three Lake Michigan regions to cause similar declines in length-at-age and condition of whitefish. These factors (e.g., food web changes, lake whitefish density) should be considered when managing the commercial fishery.  相似文献   

7.
Gravel augmentation is used in sediment‐starved streams to improve salmonid spawning habitat. As gravel is added to river channels, water surface elevations may rise in adjacent areas, activating floodplain habitat at lower flows, and floodplains inundate more frequently, potentially affecting the quantity and quality of juvenile salmonid rearing habitat. We analysed 5 years of juvenile Chinook salmon Oncorhynchus tschawytscha and steelhead Oncorhynchus mykiss data from snorkel surveys before and after gravel augmentation in the Lower American River, a low‐gradient, highly regulated alluvial river in California's Central Valley. We measured the quality and quantity of rearing habitat (current velocity and areal extent of inundated riparian vegetation) following gravel placement and tested whether these factors affected juvenile abundance. Gravel augmentation increased floodplain extent by 3.7–19.8%, decreased average flow velocity from 1.6 to 0.3 m s?1 and increased the amount of vegetative cover from 0.3% to 22.6%. Juvenile abundances increased significantly for both species following augmentation. However, the strength of the relationship between abundance and habitat variables was greater for smaller salmonids. These results suggest that, in addition to enhancing salmonid spawning habitat, gravel augmentation can improve rearing habitat where channel incision and/or regulated hydrographs disconnect floodplains from main river channels. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Lake whitefish Coregonus clupeaformis are a native coldwater species supporting important recreational and commercial fisheries in the Laurentian Great Lakes. Climate-related changes in water temperature may have important implications for the future sustainability of these fisheries. However, projecting future habitat availability is difficult because limited information is available on lake whitefish thermal ecology in the region. In this study, archival temperature loggers were implanted into 400 lake whitefish from northwestern Lake Michigan, including Green Bay, during October–November 2017. Loggers recorded temperature for 11 months at 4-hr intervals. Thirteen recovered temperature loggers were used in analyses. In winter (1 December–31 March), temperatures occupied by lake whitefish ranged from 0 to 8.0 °C, while in spring (1 April–31 May) temperatures ranged from 0 to 20.0 °C. In summer (1 June–15 September) and fall (16 September–7 November), lake whitefish occupied temperatures of 4–21.5 and 4–21.0 °C, respectively. Average temperatures in summer (10.8 °C) were within the previously proposed optimal temperature range (10–14 °C) and broad thermal niche (7–17 °C); however, 58% of observations were outside the optimal temperature range and 11% of observations were outside the broad thermal niche. Our results suggest that lake whitefish from northwestern Lake Michigan inhabit temperatures both above and below previously reported expected temperature ranges. This study provides initial insights on lake whitefish thermal ecology in Lake Michigan and can be used as a baseline for future work aimed at determining how lake whitefish habitat availability may change in the future.  相似文献   

9.
The importance of fish spawning habitat in channels connecting the Great Lakes to fishery productivity in those lakes is poorly understood and has not been adequately documented. The Detroit River is a reputed spawning and nursery area for many fish, including walleye (Sander vitreus) that migrate between adjacent Lakes Erie and St. Clair. During April–May 2004, near the head of the Detroit River, we collected 136 fish eggs from the bottom of the river on egg mats. We incubated the eggs at the Great Lakes Science Center until they hatched. All eleven larvae that hatched from the eggs were identified as walleye. These eggs and larvae are the first credible scientific evidence that walleye spawn in the Detroit River. Their origin might be a stock of river-spawning walleye. Such a stock of walleye could potentially add resilience to production by walleye stocks that spawn and are harvested in adjacent waters.  相似文献   

10.
Condit Dam is one of the largest hydroelectric dams ever removed in the USA. Breached in a single explosive event in October 2011, hundreds‐of‐thousands of cubic metres of sediment washed down the White Salmon River onto spawning grounds of a threatened species, Columbia River tule fall Chinook salmon Oncorhynchus tshawytscha. We investigated over a 3‐year period (2010–2012) how dam breaching affected channel morphology, river hydraulics, sediment composition and tule fall Chinook salmon (hereafter ‘tule salmon’) spawning habitat in the lower 1.7 km of the White Salmon River (project area). As expected, dam breaching dramatically affected channel morphology and spawning habitat due to a large load of sediment released from Northwestern Lake. Forty‐two per cent of the project area that was previously covered in water was converted into islands or new shoreline, while a large pool near the mouth filled with sediments and a delta formed at the mouth. A two‐dimensional hydrodynamic model revealed that pool area decreased 68.7% in the project area, while glides and riffles increased 659% and 530%, respectively. A spatially explicit habitat model found the mean probability of spawning habitat increased 46.2% after dam breaching due to an increase in glides and riffles. Shifting channels and bank instability continue to negatively affect some spawning habitat as sediments continue to wash downstream from former Northwestern Lake, but 300 m of new spawning habitat (river kilometre 0.6 to 0.9) that formed immediately post‐breach has persisted into 2015. Less than 10% of tule salmon have spawned upstream of the former dam site to date, but the run sizes appear healthy and stable. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

11.
Although natal homing and philopatry are well studied in anadromous salmon, few studies have investigated philopatric behavior in large, freshwater systems. In western Lake Erie, white bass (Morone chrysops) undergo seasonal spawning migrations from the open-water regions of Lake Erie to nearshore reef complexes and tributaries. The three primary spawning locations in Lake Erie are within 80 km of each other and are not separated by physical barriers. We used naturally occurring differences in otolith strontium concentrations among major spawning locations to address philopatry and vagrancy to the Sandusky River spawning location. Most individuals spawning in the Sandusky River were natal to this river (73%). No statistically significant differences in the extent of homing by sex or age of spawning were found, although a potential pattern of decreased homing with increased age of fish was observed. Given the proportion of vagrant individuals we found spawning in the Sandusky River (27%), it is unlikely that Lake Erie white bass spawning populations are genetically distinct. Furthermore, the white bass population in Lake Erie appears to be structured as a metapopulation, with non-philopatric individuals serving as a link between spawning populations.  相似文献   

12.
The oligochaete fauna at 40 stations in western Lake Erie were collected in 1982 and compared to oligochaete fauna collected similarly in 1961. A total of 34 taxa, representing 18 Tubificidae and 16 Naididae, were identified. Changes in the proportions of low, moderate, and heavy polluted sediments, as determined by ranges of total numbers of oligochaetes, indicate that, in general, heavy pollution substantially decreased near shore and moderate pollution increased and low pollution decreased in open waters over the 21-year comparison. The most common taxon, the eutrophic species, Limnodrilus hoffmeisteri, decreased in abundance in open water, indicating decreased eutrophication, whereas the distribution and abundance of other indicator taxa, including the eutrophic species L. maumeensis, L. cervix, Quistadrilus multisetosus multisetosus, and mesotrophic species Ilyodrilus templetoni and three species of Aulodrilus indicate increased eutrophication in open water. In general, oligochaete trophic indices (based on tubificid species and abundances) in traditional area designations used in 1961, the nearshore designation (<3.5 km from shore), and areas defined by cluster analysis confirm results of less eutrophic substrates near shore. However, traditional analysis indicates that low pollution was replaced by moderate pollution in open waters and cluster analysis indicates that the zone of least detectable pollution increased in open waters over the 21-year comparison. It may be that the open waters of western Lake Erie were in a stage of transition between pollution designations when sampled in 1982. The present study is valuable because it provides a baseline to assess environmental changes observed in western Lake Erie after many years of pollution abatement programs and before the exponential increase in densities of the trophic shifting zebra mussel Dreissena polymorpha.  相似文献   

13.
Road salt (NaCl, halite) use in areas with substantial snowfall has increased dramatically since the mid-20th century. However, few studies on chloride loading to the Laurentian Great Lakes or Ohio rivers have been conducted. To that end, we analyzed long-term (1972–2019) chloride data across 10 watersheds obtained as part of the Heidelberg Tributary Loading Program (HTLP) for the Lake Erie, Ohio River, and Grand Lake St. Marys watersheds and found that the Cuyahoga River, which has the greatest percent urban land use, had the highest watershed yield and mean concentrations of chloride for any of the HTLP rivers. Further, we apportioned the data seasonally to determine if river chloride levels were greater during seasons of road salt application (Winter) and snowmelt (Spring). Seasonally, winter levels of chloride exceeded the USEPA chronic water quality criteria concentration of 230 mg/L in more than half of the years of the 21st century, compared to only 1 year exceeding this value in the late 20th century. Further, road salt application is increasing with time in the Cuyahoga, Maumee, and Sandusky River watersheds. This increase is significantly and positively related to winter, spring, and fall mean chloride concentrations in the Cuyahoga River and winter mean chloride concentrations in the Maumee River. Finally, chloride-to-sulfate mass ratios (CSMR) for the Cuyahoga River almost always exceeded the 0.5 value that promotes corrosivity of metal pipes and are increasing with time. Ways to minimize the use of or even replace road salt as a deicer are warranted.  相似文献   

14.
The Detroit River ecosystem has been the focus of extensive and sustained environmental restoration efforts over the past fifty years. These efforts are rightly understood to play an important role in the revitalization of river-adjacent communities. The positive ecological and community impacts of such efforts can potentially be amplified by attending to the narrative infrastructure that inevitably shapes and conditions local residents' responses to them. The Detroit River Story Lab, a new interdisciplinary initiative at the University of Michigan, partners with local organizations to strengthen narrative infrastructure through place-based education, nonprofit journalism, and public heritage projects that seek to reconnect residents with the river and thereby increase support for and participation in environmental restoration activities.  相似文献   

15.
Light-scattering attributes of minerogenic particles from the water column of the western basin of Lake Erie (13 sites, plus one from the central basin and one from Sandusky Bay), collected after a wind event, were characterized by scanning electron microscopy interfaced with automated image and X-ray analyses (SAX). SAX results specified scattering attributes for individual particles, including size and chemical composition, and were used in forward Mie theory calculations of minerogenic scattering and backscattering coefficients (bm and bb,m). Clay mineral particles, in the size range of 1–20 μm, were the dominant form of minerogenic scattering, representing > 75% of bm and bb,m. Levels of bm and bb,m were high in the western basin, apparently in part due to wind-driven sediment resuspension, and wide spatial variability was observed. The credibility of the SAX-Mie estimates of bm and bb,m was supported by the extent of optical closure obtained with paired bulk measurements of particulate scattering and backscattering coefficients (bp and bbp), and independent estimates of organic particle contributions based on empirical bio-optical models. Minerogenic particles dominated bp and particularly bbp, and regulated spatial differences in the related common metrics of optical water quality, including turbidity and clarity. The bbp:bp ratio was found to be a good predictor of the spatial differences in the relative contributions of minerogenic particles versus phytoplankton to scattering.  相似文献   

16.
The Maumee River is an important source of phosphorus (P) loading to western Lake Erie and potentially a source of Microcystis seed colonies contributing to the development of harmful algal blooms in the lake. Herein, we quantified P forms and size fractions, and phytoplankton community composition in the river–lake coupled ecosystem before (June), during (August), and after (September) a large Microcystis bloom in 2009. Additionally, we determined the distribution and density of a newly emergent cyanobacterium, Lyngbya wollei, near Maumee Bay to estimate potential P sequestration. In June, dissolved organic phosphorus (DOP) was the most abundant P form whereas particulate P (partP) was most abundant in August and September. Green algae dominated in June (44% and 60% of total chlorophyll in river and lake, respectively) with substantial Microcystis (17%) present only in the river. Conversely, in August, Microcystis declined in the river (3%) but dominated (32%) the lake. Lake phytoplankton sequestered < 6% of water column P even during peak Microcystis blooms; in all lake samples < 112 μm non-algal particles dominated partP. Lyngbya density averaged 19.4 g dry wt/m2, with average Lyngbya P content of 15% (to 75% maximum) of water column P. The presence of Microcystis in the river before appearing in the lake indicates that the river is a potential source of Microcystis seed colonies for later lake blooms, that DOP is an important component of early summer total P, and that L. wollei blooms have the potential to increase P retention in nearshore areas.  相似文献   

17.
Despite considerable effort, predicting habitat preferences for freshwater mussels has remained elusive. This study identified four parameters that correlate with bed stability to decipher fine‐scale spatial patterning of habitat use by the western pearl shell mussel (Margaritifera falcata) in the Trinity River of Northern California. Logistic regression analysis correctly predicted the occurrence of 83% of mussel bed areas based on water depth, velocity, substrate size, and distance to the stream bank as estimated from hydrodynamic modelling of low‐flow conditions. These parameters coincide with bed stability at high flow and provide support for the ‘refugia hypothesis’. Our data clearly demonstrate that mussel beds occupied the most stable portions of the riverbed; however, habitat was partitioned with one of their primary host fish, Chinook salmon (Oncorhynchus tshawytscha), a species that also requires stable bed areas for spawning. Mussels occupied significantly deeper and lower velocity areas that were closer to the streambank compared with spawning salmon, but where habitats directly overlapped (30% of potential mussel habitat) mussels were excluded because the act of spawning disturbs the riverbed. By necessity, mussels and salmon must co‐exist, but results of this study indicate that they compete for stable bed areas that may be limiting in dynamic river systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
American shad Alosa sapidissima populations along the Atlantic Coast of North America are near historic lows despite management actions designed to rebuild stocks. Florida's St. Johns River supports the southernmost population of this anadromous species, and as water use in the St. Johns basin increases, there is concern that their spawning may be affected. We assessed American Shad movement and habitat use in the St. Johns River during three spawning migrations (2009–2011) using acoustic telemetry. Spatial distribution patterns of telemetered shad during each year were largely similar; most shad were located within reaches from Lake Monroe (rkm 276) to just downstream of Lake Harney (rkm 308); some individuals made excursions as far upstream as Lake Poinsett (rkm 386+). Water levels varied among years (low‐water level: 2009 and 2011; higher water level: 2010), and lower water levels may have contributed to an apparent constriction of spawning grounds in 2009 and 2011. Telemetered shad selected deeper sections of river with faster currents. Our results verified that the primary spawning grounds for American shad in the St. Johns have not changed substantially in the past 50 years; thus, these areas should rank high for habitat protection. We also demonstrated linkages between American Shad distribution and habitat use and river flow that should be further developed and considered in future water withdrawal, regulation, or conservation efforts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Time series measurements of current velocity, wave action, and water transparency were made at two sites—one in 24 m of water and the other in 53 m—in Lake Erie during the fall and winter of 2004–2005. The observations at the shallow site show that bottom resuspension occurred several times during the deployment. Although local resuspension did not occur at the deeper station, several advection episodes were observed. The storms during the observation period were not unusually large, so the processes observed are probably typical of those that occur on a yearly basis. The observations agree reasonably well with previous estimates for both the bottom shear stress during storms, and for the critical shear stress needed to resuspend bottom sediment, but previous estimates of the particle settling velocity are probably too low, while previous estimates of the sediment entrainment rate are too high. The results show that bottom material in the central basin is reworked numerous times before it is finally buried. Deposition in the eastern basin is a more continuous process, but the events observed were not sufficient to match the long-term accumulation rate, so deposition at this site is probably also due in part to larger, more infrequent storms.  相似文献   

20.
The Missouri River has been extensively altered as the result of channelization, bank stabilization, and the construction of six main stem reservoirs. In response to the resultant habitat loss, the US Army Corps of Engineers was tasked with restoring approximately 8100 ha of shallow water habitat (SWH), in part, for the benefit of the endangered pallid sturgeon (Scaphirhynchus albus). Construction of off‐channel habitats involves the removal and disposal of excavated alluvium either by direct discharge into the river or by secondary erosion, which raised concerns regarding the introduction of sediment and associated nutrients into the Missouri River. Soils from nine side‐channel chutes were sampled to represent nutrient concentrations from habitat restoration activities. Soils from 12 historically undisturbed sites were also sampled to represent reference conditions in the Missouri River flood plain. The results of this study indicate that nutrient characteristics of soils from selected SWH locations generally are similar to those of historically undisturbed soils. The estimated mass of total phosphorus from chutes accounted for 1.9% of Missouri River and 0.5% of Mississippi River total phosphorus loads during the 1993–2012 analysis period. The mass of nitrate, the constituent most closely related to gulf hypoxia, was 0.01% or less of the Missouri and Mississippi River nitrate loads. Sediment volumes from the chutes accounted for 3.1 and 1.5% of total suspended loads from the Missouri and Mississippi Rivers. Overall, the introduced sediment from side‐channel chute construction associated with SWH restoration accounts for a small portion of total nutrient and sediment transport in the Missouri and Mississippi Rivers. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. River Research and Applications published by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号