首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The behavior of a multi-layer material at high strain rate and the effect of plastic deformation on stress wave propagation were investigated by a combination of experimental and numerical techniques. Plastic deformation effects were studied in multi-layer materials consisting of ceramic, copper and aluminum subjected to large strains under high strain rate loading. First, stress wave propagation behavior for the monolithic metals was studied, and then extended to multilayer combinations of these metals with each other and with a ceramic layer. The axial stress distributions were found to be non-uniform in the elastic deformation range of the specimen. The degree of non-uniformity was much more pronounced in the multi-layer samples consisting of different materials. The presence of a ceramic layer increased the magnitudes of stress gradients at the interfaces. It was also found that a major effect of plastic deformation is a tendency to produce a more homogeneous stress distribution within the components. The implications of these observations for practical systems are discussed.  相似文献   

2.
In this paper the effect of strain rate on the tensile, shear and compression behaviour of a commingled E-glass/polypropylene woven fabric composite over a strain rate range of 10−3–102 s−1 is reported. The quasi-static tests were conducted on an electro-mechanical universal test machine and a modified instrumented falling weight drop tower was used for high strain rate characterisation. The tensile and compression modulus and strength increased with increasing strain rate. However, the shear modulus and strength were seen to decrease with increasing strain rate. Strain rate constants for use in finite element analyses are derived from the data. The observed failure mechanisms deduced from a microscopic study of the fractured specimens are presented.  相似文献   

3.
The quasi-static and rate-dependent mechanical properties of aramid yarns are presented together with a study on different methods of securing yarn specimens in tensile tests. While capstans were found to be suitable for quasi-static tests, they either were not strong enough or had too high inertia for dynamic tests in a Split Hopkinson Pressure Bar setup. Instead, specially designed clamps were used. A viscoelastic material model to describe the mechanical behavior of the yarns, including failure, is also presented. The material model was employed in the computational simulation of ballistic penetration of woven aramid fabrics. Comparison of the simulations and actual ballistic tests showed that predictions of the energy absorbed by the fabric were in good agreement with the experiments.  相似文献   

4.
Quasi-static and high strain rate tensile tests have been performed on T700 carbon fiber bundles and complete stress-strain curves at the strain rate range of 0.001 s− 1 to 1300 s− 1 were obtained. Results show that strain rate has negligible effect on both ultimate strength and failure strain, and T700 carbon fiber can be regarded as strain rate insensitive materials. On the basis of the fiber bundles model and the statistic theory of fiber strength, a damage constitutive model based on Weibull distribution function has been developed to describe tensile behavior of T700 fiber bundles. And the method to determine the statistic parameters of fibers by tensile tests of fiber bundles is established, too.  相似文献   

5.
A microstructure optimization design method of the forging process is proposed. The optimization goal is a small grain size and a homogeneous grain distribution of the forgings. The optimization object is the preforming die shape. The microstructure optimization code is developed using the micro-genetic algorithm and the finite element method. The two forming steps including the preforming process and the final forging process of H-shape forgings are analyzed using the self-developed code. The optimization results show that small grain size and homogeneous grain distribution can be achieved by controlling the shape of the preforming die. Samples of the same size as in the optimization are preformed and then forged to the desired H-shape forgings under the same deformation conditions as in the optimization. Micrographs in the symmetry section of samples show that the grain sizes of the forgings almost coincide with the optimization results.  相似文献   

6.
A method is presented for obtaining materials parameters, for quartz sand, over a wide range of strain rates. This involves the use of a modified Kolsky bar and plate impact experiments. Data were analysed based on the determination of longitudinal and lateral stresses in the Kolsky method. These values were combined with the longitudinal stress data from shock experiments to provide a stress–compression curve. From this curve, other parameters can be determined.  相似文献   

7.
The superplastic deformation characteristics and microstructure evolution of the rolled AZ91 magnesium alloys at temperatures ranging from 623 to 698 K (0.67–0.76 Tm) and at the high strain rates ranging from 10−3 to 1 s−1 were investigated with the methods of OM, SEM and TEM. An excellent superplasticity with the maximum elongation to failure of 455% was obtained at 623 K and the strain rate of 10−3 s−1 in the rolled AZ91 magnesium alloys and its strain rate sensitivity m is high, up to 0.64. The dominant deformation mechanism in high strain rate superplasticity is still grain boundary sliding (GBS), which was studied systematically in this study. The dislocation creep controlled by grain boundary diffusion was considered the main accommodation mechanism, which was observed in this study.  相似文献   

8.
Compressive behavior of closed-cell aluminum alloy foams at strain rates of 10−3-450 s−1 has been studied experimentally. The fully stress-strain curves of specimens at medium strain rates were obtained using the High Rate Instron Test System, which can maintain a constant loading rate. The experimental results show that plateau stress and energy absorption capacity are remarkable dependent on strain rate, while the densification strain has a negligible dependence.  相似文献   

9.
A bimodal Weibull distribution function was applied to analyse the strength distribution of glass fibre bundles under tensile impact. The simulation was performed using a one-dimensional damage constitutive model. The results show that there were two concurrent flaw populations in the fracture process. The regression analysis using the bimodal Weibull distribution function was in good agreement with experiment.  相似文献   

10.
Unit cell models have been widely used for investigating fracture mechanisms and mechanical properties of composite materials assuming periodically arrangement of inclusions in matrix. It is desirable to clarify the geometrical parameters controlling the mechanical properties of composites because they usually contain randomly distributed particulate. To begin with a tractable problem this paper focuses on the effective Young’s modulus E of heterogeneous materials. Then, the effect of shape and arrangement of inclusions on E is considered by the application of FEM through examining three types of unit cell models assuming 2D and 3D arrays of inclusions. It is found that the projected area fraction and volume fraction of inclusions are two major parameters controlling effective elastic modulus of inclusions.  相似文献   

11.
The effects of Al addition on dynamic flow response of the fully austenitic high Mn steel were investigated by conducting high strain rate compression tests on Fe-22Mn-xAl-0.6C steels (x = 0, 3, 6 in wt.%). While dynamic yield strength of the 0 Al steel and the 3 Al steel were comparable, the 6 Al steel exhibited the highest one. Meanwhile, strain hardenability of the 0 Al steel was the highest and that of other two steels was nearly same. Under the present dynamic loading, no obvious dynamic recrystallization by adiabatic heating was observed in all steels. Fully compressed microstructures revealed (a) ?-martensite and mechanical twin bands for the 0 Al steel, (b) multi-layer deformation bands and mechanical twin bands for the 3 Al steel, and (c) a variety of dislocation configurations such as the directional slip traces, tangled dislocations, and incomplete dislocation cells for the 6 Al steel. These findings inform that dynamic flow of the 0 Al steel was associated with both TRIP and TWIP, and that of other two steels was dominated by dislocation gliding - mainly, planar glide for the 3 Al steel and the combination of both planar glide and wavy glide for the 6 Al steel. The dynamic flow response of the present steels was discussed in terms of the stacking fault energy affected by the Al content and adiabatic heating during dynamic loading and of the strain rate effect on the critical stress for mechanical twinning.  相似文献   

12.
As the lightest metal material, magnesium alloy is widely used in the automobile and aviation industries. Due to the crashing of the automobile is a process of complicated and highly nonlinear deformation. The material deformation behavior has changed significantly compared with quasi-static, so the deformation characteristic of magnesium alloy material under the high strain rate has great significance in the automobile industry. In this paper, the tensile deformation behavior of AZ31B magnesium alloy is studied over a large range of the strain rates, from 700 s−1 to 3 × 103 s−1 and at different temperatures from 20 to 250 °C through a Split-Hopkinson Tensile Bar (SHTB) with heating equipment. Compared with the quasi-static tension, the tensile strength and fracture elongation under high strain rates is larger at room temperature, but when at the high strain rates, fracture elongation reduces with the increasing of the strain rate at room temperature, the adiabatic temperature rising can enhance the material plasticity. The morphology of fracture surfaces over wide range of strain rates and temperatures are observed by Scanning Electron Microscopy (SEM). The fracture appearance analysis indicates that the fracture pattern of AZ31B in the quasi-static tensile tests at room temperature is mainly quasi-cleavage pattern. However, the fracture morphology of AZ31B under high strain rates and high temperatures is mainly composed of the dimple pattern, which indicates ductile fracture pattern. The fracture mode is a transition from quasi-cleavage fracture to ductile fracture with the increasing of temperature, the reason for this phenomenon might be the softening effect under the high strain rates.  相似文献   

13.
The microstructures and mechanical properties of 32Mn–7Cr–1Mo–0.3N steel under high strain rate tension companied with different deformation temperature are investigated by using of the split-Hopkinson pressure bar (SHPB). The results show that with increasing the strain rate and decreasing the deformation temperature the strength increase, but the elongation and the area reduction do not obviously decrease. The fracture surfaces of the tensile specimens all exhibit ductile characters with many dimples. The X-ray diffraction analysis (XRD) results show no ′-martensite in all specimens. The transmission electron microscope (TEM) observations further confirm that the deformation microstructures are mainly composed of deformation twins and slipping bands or stacking faults.  相似文献   

14.
A semi-empirical method is proposed for the extraction, simultaneously, of the transverse tensile and in-plane shear moduli of unidirectional laminae, at various strain rates and temperatures, from tests on symmetric and balanced ±65 ° angle-ply composite laminates. The extraction method is applied to data obtained from tests on Kevlar-49/epoxy and carbon/ epoxy filament-wound tubes which were subjected to internal pressure loading at three key temperatures of −45, 20 and 70 °C at different strain rates of up to 80/s. The combined effect of strain rate and temperature on these extracted properties is studied by applying strain rate temperature equivalence principles. It is found that the variation of the mechanical properties of the two materials with strain rate and temperature can be adequately described by semi-empirical equations similar to the Arrhenius and Williams-Landel-Ferry relationships, usually used for homogeneous solids.  相似文献   

15.
The resistive behavior of multi-walled carbon nanotube (MWCNT)/epoxy resins, tested under mechanical cycles and different levels of applied strain, was investigated for specimens loaded in axial tension. The surface normalized resistivity is linear with the strain for volume fraction of MWCNTs between 2.96 × 10−4 and 2.97 × 10−3 (0.05 and 0.5% wt/wt). For values lower than 0.05% wt/wt, close to the electrical percolation threshold (EPT) a non-linear behavior was observed. The strain sensitivity, in the range between 0.67 and 4.45, may be specifically modified by controlling the nanotube loading, in fact the sensor sensitivity decreases with increasing the carbon nanotubes amount. Microscale damages resulted directly related to the resistance changes and hence easily detectable in a non-destructive way by means of electrical measurements. In the fatigue tests, the damage is expressed through the presence of a residual resistivity, which increases with the amount of plastic strain accumulated in the matrix.  相似文献   

16.
Investigations on high strain rate behavior of epoxy LY 556 under compressive loading are presented. Compressive Split Hopkinson Pressure Bar (SHPB) apparatus was used for the experimental investigations. The studies are presented in the strain rate range of 683-1890 per second. It was generally observed that the compressive strength is enhanced at high strain rate loading compared with that at quasi-static loading. During SHPB testing of the specimens, it was observed that the peak force obtained from the strain gauge mounted on the transmitter bar is lower than the peak force obtained from the strain gauge mounted on the incident bar. Further, an analytical method is presented based on variable rate power law for the prediction of compressive strength at high strain rate loading for epoxy LY 556. Using the analytical method, high strain rate compressive stress-strain behavior is presented up to strain rate of 10,000 per second.  相似文献   

17.
304不锈钢是一种常用的奥氏体不锈钢.在拉伸应变过程中,应变速率的变化会诱发马氏体转变量和转变速率,以及内部组织滑移线、位错、层错、形变孪晶密度的转变量和转变速率的不同,从而表现出不同的应变硬化行为.本文针对0.1 mm厚度304奥氏体不锈钢箔材,从断后伸长率,断面收缩率,屈服强度,抗拉强度及硬化指数5个方面,研究了室温条件下不同应变速率对其拉伸性能的影响.实验结果表明:马氏体转变理论同样适用于304奥氏体不锈钢箔材, 且0.1 mm厚度304不锈钢存在“越薄越脆,越小越强”的尺寸效应现象;同时,0.1 mm厚度304奥氏体不锈钢箔材拉伸力学性能随应变速率的变化主要表现在以下几方面:断后延伸率和断面收缩率均随着应变速率的增加而降低;低应变速率时,随着应变速率的增加屈服强度增大,而抗拉强度随应变速率的提高呈现减弱的相反规律;高应变速率下,304奥氏体不锈钢的强度主要由材料本身性能决定,应变速率的改变对强度的影响较小;准静态低应变速率下,硬化指数随应变速率增大而升高,较高应变速率下,硬化指数与应变速率变化无关.  相似文献   

18.
Deformation of PC/ABS alloys at elevated temperatures and high strain rates   总被引:1,自引:0,他引:1  
The objective of this paper is to experimentally study the deformation behavior of the alloys of polycarbonate (PC) and acrylonitrile–butadiene–styrene (ABS) at elevated temperatures and high strain rates. Four kinds of PC/ABS alloys with the ratio of PC to ABS being 80:20, 60:40, 50:50 and 40:60 and three different strain rates 8.0 × 102 s−1, 2.7 × 103 s−1 and 1.0 × 104 s−1 are considered. The Split Hopkinson Pressure Bar (SHPB) experiments are carried out at 293 K and 343 K, respectively. The curves of engineering stress and engineering strain and true stress and true strain are obtained for the PC/ABS alloys at different temperatures and different strain rates, respectively. The effects of temperature, strain rate and the fraction of ABS on the deformation behavior of PC/ABS alloys are discussed in details, and then a temperature and strain rate-dependent phenomenological constitutive model for PC/ABS alloys is developed.  相似文献   

19.
20.
This research aims to study: (1) the crack damage mitigation and shear behavior of reinforced concrete (RC) beams that have been repaired using strain-hardening cement-based composite (SHCC) via experimental testing and (2) the contribution of the SHCC layers to the shear strength of the repaired RC beams via predictions. Five cantilever RC beams with a shear span-to-depth ratio of 2.8 were subjected to cyclic concentrated loading. The study variables include two types of tensile performance of the SHCC (with low or high strength in tension) and two repair methods (patching and layering). The experimental results show that the use of a SHCC layer leads to a substantial increase in the shear strength and ductility of the RC beams after the peak load. During the tests, all of the SHCC repaired beams showed delamination along the interface between the concrete and SHCC, and the shear resistance started to drop. However, the results also indicate that SHCC layers can be effective repair material for enhancing the control of cracking to help protect the concrete from the migration of aggressive agents in severe environments. In order to predict the shear strength of RC beams that have been repaired with SHCC, two methods were used in this study; one is based on Dinh's proposed model that considers the shear strength in both the compression and tension zones, and the other method considers the shear strength of the reinforcement, such as a stirrup or fiber-reinforced polymer (FRP) laminate that considers only the tensile strength across cracks. These two methods were able to predict the contribution of the SHCC layer to the shear strength of the RC beams, and the predicted shear strength values were very similar between the two methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号