首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Mo3Sb7, crystallizing in the Ir3Ge7 type structure, has poor thermoelectric (TE) properties due to its metallic behavior. However, by a partial Sb-Te exchange, it becomes semiconducting without noticeable structure changes and so achieves a significant enhancement in the thermopower with the composition of Mo3Sb5Te2. Meanwhile, large cubic voids in the Mo3Sb5Te2 crystal structure provide the possibility of filling the voids with small cations to decrease the thermal conductivity by the so-called rattling effect. As part of the effort to verify this idea, we report herein the growth as well as measurements of the thermal and electrical transport properties of Mo3Sb5.4Te1.6 and Ni0.06Mo3Sb5.4Te1.6.  相似文献   

2.
In this work we studied the crystal structure and physical properties of the new one-dimensional cobalt oxide CaCo2O4+δ . The CaCo2O4+δ phase crystallizes as a calcium-ferrite-type structure, which consists of a corner- and edge-shared CoO6 octahedron network including one-dimensional double chains. The specific-heat Sommerfeld constant γ was found to be 4.48(7) mJ/mol K2. This result suggests that the CaCo2O4+δ phase has a finite density of states at the Fermi level. Metallic temperature dependence of the Seebeck coefficient S with a large thermoelectric power (S = 151 μV/K at 387 K) was observed. The origin of the large thermoelectric power may be attributed to the quasi one-dimensional character of the energy band near the valence band maximum in CaCo2O4+δ .  相似文献   

3.
The type II clathrate Na22Si136 is prepared by the thermal decomposition of NaSi. Thermal analysis indicates this phase is metastable yet has a relatively high decomposition temperature. Rietveld analysis indicates that Na in the larger Si28 cage is shifted off-center, analogous to observations in some type I clathrates. Temperature-dependent electrical and thermal transport properties are reported for Na22Si136, for which the spark plasma sintering technique was found to be effective in achieving intergrain sintering in the consolidated specimen. The potential that type II clathrate materials possess for thermoelectric applications is discussed.  相似文献   

4.
The effect of nano Cr2O3 additions in (Bi, Pb)-Sr-Ca-Cu-O superconductors using the coprecipitation method is reported. Nano Cr2O3 with 0.1, 0.3, 0.5, 0.7, and 1.0 wt.% were added to the (Bi, Pb)-Sr-Ca-Cu-O system. The critical temperature (T c) and transport critical current density (J c) were determined by the four-point probe technique. The phases in the samples were determined using the powder X-ray diffraction method. The microstructure was observed by a scanning electron microscope and the distribution of nano Cr2O3 was determined by energy-dispersive X-ray analysis (EDX). The maximum T c and J c were observed for the sample with 0.1 wt.% nano Cr2O3. The variation in the J c of all the samples was explained by the effective flux pinning by nano Cr2O3 in the samples. Using the self-field approximation together with the dependence of J c on temperature, the characteristic length (L c) associated with the pinning force was estimated to be approximately the same as the average grain size in all the samples.  相似文献   

5.
Ternary palladates CdPd3O4 and TlPd3O4 have been studied theoretically using the generalized gradient approximation (GGA), modified Becke–Johnson, and spin–orbit coupling (GGA–SOC) exchange–correlation functionals in the density functional theory (DFT) framework. From the calculated ground-state properties, it is found that SOC effects are dominant in these palladates. Mechanical properties reveal that both compounds are ductile in nature. The electronic band structures show that CdPd3O4 is metallic, whereas TlPd3O4 is an indirect-bandgap semiconductor with energy gap of 1.1 eV. The optical properties show that TlPd3O4 is a good dielectric material. The dense electronic states, narrow-gap semiconductor nature, and Seebeck coefficient of TlPd3O4 suggest that it could be used as a good thermoelectric material. The magnetic susceptibility calculated by post-DFT treatment confirmed the paramagnetic behavior of these compounds.  相似文献   

6.
Positive-muon spin rotation (μ+SR) spectroscopy and magnetic moment measurements were used to probe fluxon (or vortex) formation in the superconducting mixed state of a high-purity YBa2Cu3O7 crystal. Random potentials caused by crystal-lattice defects pin fluxons. A fluxon lattice forms in an external magnetic field, and changes of thermal activation lead to fluxon pinning and depinning. The root second moment of the local magnetic field distribution (σ) determined by μ+SR contains information on the magnetic penetration depth and the pinning. Fluxon pinning leads to temperature-dependent transverse displacements of the fluxons that decrease σ and also fluctuations in the separation between fluxons that tend to increase σ. By accounting for the field-dependent and temperature-activated fluxon disorder, it is found that the experimental results for the penetration depth are consistent with a supercon-ducting order parameter of a strong-coupling two-fluid model, confirming that the superconductivity is nodeless with s-wave superconducting pairing. Quantitative results for fluxon displacements are discussed within the context of the fluxon field-temperature phase diagram.  相似文献   

7.
The influence of BaCu(B2O5) (BCB) addition on the sintering temperature and microwave dielectric properties of ZnO-2TiO2-Nb2O5 (ZTN) ceramic has been investigated using dilatometry, x-ray diffraction, scanning electron microscopy, and microwave dielectric measurements. A small amount of BCB addition to ZTN can lower the sintering temperature from 1100°C to 900°C. The reduced sintering temperature was attributed to the formation of the BCB liquid phase. The ZTN ceramics containing 3.0 wt.% BCB sintered at 900°C for 2 h have good microwave dielectric properties of Q × f = 19,002 GHz (at 6.48 GHz), ε r = 45.8 and τ f  = 23.2 ppm/°C, which suggests that the ceramics can be applied in multilayer microwave devices, provided that Ag compatibility exists.  相似文献   

8.
The polarity control of ZnO films grown on (0001) Al2O3 substrates by plasma-assisted molecular-beam epitaxy (P-MBE) was achieved by using a novel CrN buffer layer. Zn-polar ZnO films were obtained by using a Zn-terminated CrN buffer layer, while O-polar ZnO films were achieved by using a Cr2O3 layer formed by O-plasma exposure of a CrN layer. The mechanism of polarity control was proposed. Optical and structural quality of ZnO films was characterized by high-resolution X-ray diffraction and photoluminescence (PL) spectroscopy. Low-temperature PL spectra of Zn-polar and O-polar samples show dominant bound exciton (I8) and strong free exciton emissions. Finally, one-dimensional periodic structures consisting of Zn-polar and O-polar ZnO films were simultaneously grown on the same substrate. The periodic inversion of polarity was confirmed in terms of growth rate, surface morphology, and piezo response microscopy (PRM) measurement.  相似文献   

9.
This work presents vertical flash memory devices with protein-assembled PbSe nanocrystals as a floating gate and Al2O3 as a control oxide. The advantage of a vertical structure is that it improves cell density. Protein assembly improves uniformity of nanocrystals, which reduces threshold voltage variation among devices. The introduction of Al2O3 as a control oxide provided lower voltage/faster operation and hence less power consumption compared with the devices fabricated with SiO2. The integration of Al2O3 appeared to be compatible with the protein assembly approach. In conclusion, Al2O3 has the potential to become the high-k control oxide due to its relatively high electron/hole barrier heights, and high permittivity.  相似文献   

10.
This paper describes the optical characteristics of indium- and tungsten-doped ZnGa2O4 phosphor for field emission display (FED). The solid-state reaction is used to synthesize the phosphor powder, and the phosphor film is prepared by electrophoresis. Indium doping enhances the luminescence of ZnGa2O4 phosphor; nevertheless, the emission of phosphor doped by tungsten shifts to the short wavelength region. From the measurement of the cathodoluminescence (CL), it reveals that the luminescence of the phosphor film is improved when it is annealed in an O2/Ar atmosphere. A luminance of 2,080 cd/m2 is obtained as the phosphor film is excited at an electron voltage of 5 kV and an anode current of 30 μA.  相似文献   

11.
We present evidence that it is the presence or absence of atomic terraces with a specific crystallographic orientation on the (102) Al2O3 surface that promotes growth of single-crystal (001) CeO2 films over polycrystalline (111) CeO2 films. The CeO2 film nucleates so that the [010] and [100] directions of the film align parallel and perpendicular to the terrace edges. In the absence of terraces, multidomain (111) CeO2 films result in which the in-plane orientation of the two domains are rotated by 85.71°, so that a [110] CeO2 direction aligns parallel to either the or Al2O3 direction.  相似文献   

12.
Hollandite-type Ba1−xSrxZnTi7O16 (x=0, 0.2, 0.4, 0.6, 0.8, and 1) ceramics have been synthesized by the conventional solid-state ceramic route. The phase purity and microstructure of these compositions have been characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD analysis shows that an increase in strontium concentration in the A-site causes pairing of vacant tunnel sites, and hence the structure becomes unstable due to the collapse of the tunnel walls. The dielectric properties such as dielectric constant (εr), loss tangent (tan δ), and temperature variation of dielectric constant (τεr) have been measured up to the 13 MHz region. The present study shows that zinc hollandites have relatively high dielectric constant and low loss tangent. The temperature variation of dielectric constant studies reveal that Ba-rich compositions have high positive τεr and Sr-rich compositions have high negative τεr in the 0–100°C region. Proper tailor making of these compositions has been attempted to arrive at near-zero temperature variation of the dielectric constant.  相似文献   

13.
Photosensitive polycrystalline CuIn0.95Ga0.05Se2 thin films have been formed on glass, aluminum, and nanoporous Al/Al2O3 substrates by means of two-step selenization in a gas (nitrogen) flow carrying a reaction component (selenium). The structural properties and the Raman scattering spectral dependences have been investigated. The dependence of the main lattice parameters and intensities of the Raman scattering lines on the substrate material is demonstrated.  相似文献   

14.
The electronic structure and optical properties of In4Sn3O12 and In4Ge3O12 are studied by the projector-augmented-wave method based on the density-functional theory within the generalized gradient approximation. The cation ordering of the two compounds is explored by means of first-principles calculations. It is found that the valence-band maximum of the materials is determined by the d states of metal elements and O-2p states; the conduction-band minimum is occupied by an admixture of the O-2p states, In-5s states, and Sn-5s or Ge-4s states, respectively. The two compounds are direct-bandgap semiconductors. The low intensity of the absorption coefficient, reflectivity, and loss function shows that they are good transparent conducting oxides.  相似文献   

15.
Following the demonstration of room-temperature luminescence, Er2O3 has been explored as a high-gain medium for ultra-compact waveguide amplifiers. With sputtered and annealed films, we measure three radiative lifetimes (7 ms, 0.8 ms, and 0.5 ms) and upconversion coefficients at 4.2 K. We have correlated these measurements with three crystalline phases: the thermodynamically stable bcc phase and the metastable fcc and hcp phases. The 7-ms lifetime is correlated with the fcc phase, implying the metastable crystal state has a profound influence on inhibiting upconversion interaction between neighbor Er atoms. Measurements indicate optical gain >3 dB/cm is possible.  相似文献   

16.
Proton irradiation of Sc2O3/GaN and Sc2O3/MgO/GaN metal-oxide semiconductor diodes was performed at two energies, 10 MeV and 40 MeV, and total fluences of 5 × 109 cm−2, corresponding to 10 years in low-earth orbit. The proton damage causes a decrease in forward breakdown voltage and a flat-band voltage shift in the capacitance-voltage characteristics, indicating a change in fixed oxide charge and damage to the dielectric. The interface state densities after irradiation increased from 5.9 × 1011 cm−2 to 1.03 × 1012 cm−2 in Sc2O3/GaN diodes and from 2.33 × 1011 to 5.3 × 1011 cm−2 in Sc2O3/MgO/GaN diodes. Postannealing at 400°C in forming gas recovered most of the original characteristics but did increase the interfacial roughness.  相似文献   

17.
The Ca3Ru2O7 with a Mott-like transition at 48 K and a Neel temperature at 56 K features different in-plane anisotropies of magnetization and magnetoresistance. Applying the magnetic field along the magnetic easy axis precipitates a spin-polarized state via a first-order metamagnetic transition but does not lead to full suppression of the Mott state, whereas applying a magnetic field along the magnetic hard axis does, causing a resistivity reduction of three orders of magnitude. The colossal magnetoresistivity is attributed to the collapse of a novel, orbitally ordered and spin-polarized state. This new phenomenon is striking in that the spin polarization, which is a fundamental driving force for all other magnetoresistive systems, is detrimental to the colossal magnetoresistance (CMR) in this 4d-based electron system. Evidence for a density wave is also presented.  相似文献   

18.
Modifying the polycrystalline phosphors Y2O3:Eu and Y2O2S:Eu in order to allow their application as submicron composite materials for electrovacuum luminescent video-imaging devices and light sources is considered. The effect of synthesizing such materials through the use of H3BO3 on their crystal structure, spectral characteristics, and photo- and cathodoluminescence intensities is investigated.  相似文献   

19.
Conjugated amino-phthalocyanine copper containing carboxyl groups/magnetite (NH2-CuPc@Fe3O4) has been fabricated from FeCl3·6H2O and NH2-CuPc via a simple solvothermal method and its electromagnetic properties investigated. Scanning electron microscopy and transmission electron microscopy revealed that the NH2-CuPc@Fe3O4 was a waxberry-like nanomaterial with NH2-CuPc molecules effectively embedded in the interior of Fe3O4 particles in the form of beads. Introduction of NH2-CuPc effectively improved the complementarity between the dielectric and magnetic losses of the system, resulting in excellent electromagnetic performance. The minimum reflection loss of the as-prepared composite reached ?33.4 dB at 7.0 GHz for coating layer thickness of 4.0 mm and bandwidth below ?10.0 dB (90% absorption) of up to 3.8 GHz. These results indicate that introduction of NH2-CuPc results in a composite with potential for use as an electromagnetic microwave absorption material.  相似文献   

20.
In this study, we investigated the chemical composition and electronic structure of the delafossite-type oxides CuFeO2 (CFO) and CuFe0.98Ni0.02O2 (CFNO). The hole carrier density in the Cu and FeO2 layers of CFNO was found to be different from that of CFO, leading to the enhancement of electrical conductivity by Ni substitution. In addition, thermoelectric properties were found to be affected by the surface treatment, possibly due to some surface contamination. An etched CFNO (E-CFNO) exhibited a higher electrical conductivity and a higher Seebeck coefficient relative to the polished CFNO (P-CFNO). The thermal conductivity did not change much between E-CFNO and P-CFNO. As a result, the thermoelectric performance of E-CFNO was higher than that of P-CFNO. This result indicates that etching is needed when we use CFNO as a p-leg in thermoelectric generators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号