首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 186 毫秒
1.
山东省褚岛北部海域是中国建设中的波浪能和潮流能试验场场址所在,该文利用MIKE21 SW波浪模型结合实际观测对该海域的波浪场进行模拟计算,分析该海域的波浪特征和波浪能资源分布,评估试验场海域波浪能发电装置可进行试验测试的有效时间。研究发现:褚岛北部海域的波浪场空间分布较规律,波高等值线基本平行,向外海逐渐增强,年平均有效波高0.6~0.8 m,年平均波浪能密度2.0~3.0 kW/m,且季节差异显著。冬季波浪能资源丰富,波浪能密度可达6.0 kW/m,夏季则较弱。试验场海域波浪能可利用的有效时间全年约3494 h,主要集中在冬半年。  相似文献   

2.
万勇  张杰  孟俊敏 《太阳能学报》2015,36(5):1259-1267
利用近20年ERA-Interim再分析资料提供的海浪场数据研究东海、南海近海和近岸(4个波能富集区)波浪能资源的分布状况。研究表明:波功率密度大值区位于南海中北部、吕宋海峡、琉球群岛附近、台湾和菲律宾东部海域,Pw约为14~18 k W/m,波能资源秋冬季大,春夏季小;波能丰富且稳定的区域位于东海、南海北部近岸海域、台湾东部海域;南海年总波能量高于东海,越接近外海,年总波能量越大。近岸波能富集区波功率指向性好,波功率方向集中,有利于获得最大吸能效率;极值波功率最大可达330 k W/m,对总波能密度有突出贡献的波况大致相同,Hs为0.5~4.0 m,Te为4~9 s,该波况范围的能量约占总能量的90.0%以上。所得结果可为波能电站的选址及波能装置的设计提供参考。  相似文献   

3.
通过对大万山波浪能示范场资源的测试,针对6月份的波浪数据进行全面统计,分析大万山海域的波浪能资源分布状况。结果表明大万山海域波高范围为0.3~1.8 m,周期范围为2.7~8.0 s,浪向以正南向为主,能流密度均值为2.2 kW/m。大万山波浪能示范场的波浪能资源测试结果,可为在该示范场进行实海况测试的波浪能装置的设计、投放、运行提供理论参考。  相似文献   

4.
利用VBA编程技术提取海图的水深数据建立Delft3D模型,模拟并分析斋堂岛海域潮流特性;根据潮流仿真结果结合FLUX方法进行潮流能发电装置的微观选址,并评估其资源可开发量。结果表明:VBA编程技术提取的水深数据与原数据吻合良好;斋堂岛海域最大潮流速度2.1 m/s,发生在大潮期落潮阶段;斋堂岛南部35.613°N,119.936°E处安放发电装置,该位置资源可开发量可达520 kW。  相似文献   

5.
在波浪能发电装置现场测试工作中,波浪参数的测量是评估波浪能发电装置性能的重要依据之一。在分析和比较波浪骑士与浪龙的波浪测量方式基础上,开展对这2种设备在大万山海域现场的对比测试工作。应用标准差、皮尔逊相关系数等数学方法,对测试数据进行处理与分析,并绘制有效波高玫瑰图,分析这2种设备对波浪参数的测量差异性。结果表明,波浪骑士与浪龙对有效波高和波周期参数的测量差异性较小,对波向的测量差异性较为显著。研究成果为波浪能发电装置现场测试工作中波浪参数的测量提供了参考依据。  相似文献   

6.
介绍中国自主发展的自航气动式振荡水柱波浪能发电船技术。发电船由一个船型浮力舱、一个水平管、一个垂直管、空气透平和发电机组成。在长1.2 m、宽0.51 m的模型进行水槽实验,结果表明在规则波下俘获宽度比最高可达104.07%,在随机波下最高俘获宽度比为82.4%。基于该模型按相似原则设计多种型号的发电船,其中一艘样机装机功率1 kW,主体长5.2 m、宽2.3 m,质量4.5 t,在深圳大亚湾海域进行试验,可实现装置的波浪发电和航行。  相似文献   

7.
以鹰式二号波浪能发电装置为研究对象,基于捕获宽度达到最优为准则,通过对波浪中运动的装置建立频域运动方程,计算装置运动模态响应、获得最优负载阻尼和主要结构点受力等设计要素,并根据万山岛海域波浪条件开展能量转换系统负载设计、提供结构强度设计支持数据等。研究结果表明:在不同波况下装置获得捕获宽度对应的最优阻尼也不同;鹰式二号波浪能装置对于周期约2 s小周期波浪也具有良好的响应,捕获宽度达50%以上,在主要设计波况3~6 s最高捕获宽度达到300%,在万山岛海域波浪能试验场波况最高捕获宽度达到200%。  相似文献   

8.
万勇  范陈清  戴永寿 《太阳能学报》2018,39(12):3311-3318
利用近20年的ERA-Interim再分析海浪场数据,对山东半岛周边近岸海域波浪能开发潜力进行评估,重点研究优势区域重点单站和波浪能装置有关的指标。结果表明:山东半岛周边近岸海域波浪能资源开发潜力较高的优势区域位于威海东北部近岸海域、荣成东部和东南部近岸海域。优势区域重点单站波浪能的集中度较好,各季节主波功率密度的方向集中在北向上;对总能量有突出贡献的波高和波周期范围大致相同,为H_s:0~3.5 m,T_e:0~8 s。Wave Star是目前最适合于重点单站波浪能开发的装置,但其能量利用率仅约为6.2%,并非最理想的选择,还需研发效率更高的波浪能装置。  相似文献   

9.
文章研究了直驱式波浪能发电场的优化布局问题。将直驱式波浪能发电装置简化为地形,利用Mike21软件计算波浪能发电场内的波浪分布,进而将其作为波浪能发电场电气模型的输入,仿真获得波浪能发电场输出功率。在此基础上,基于波浪的传输特性,对波浪能发电场内各发电装置进行优化布局,以保证发电场的平均输出功率,同时改善功率输出的波动性。得到优化布局方案后,分别在规则波和不规则波两种情况下验证了方案的有效性。  相似文献   

10.
全球海域风能资源储量分析   总被引:5,自引:0,他引:5  
郑崇伟 《中外能源》2011,16(7):37-41
利用高精度、较高时空分辨率的CCMP风场,计算了近22年全球海域的风能密度、有效风速出现频率、风能密度变化趋势、风能资源储量,以期为海上风力发电等风能资源的开发利用提供定量的科学依据。全球大部分海域的风能密度在200W/m2以上,仅在赤道附近小范围海域低于200W/m2,大值区分布于南北半球西风带海域,中国大部分海域的风能密度都在200W/m2以上;全球大部分海域的有效风速出现频率很高,基本都在90%以上,即使出现频率偏低的海域也基本都在50%以上,中国海域的有效风速出现频率大多在80%以上;近22年间全球大部分海域的风能密度呈显著性逐年线性递增趋势,仅部分零星海域的变化趋势不显著或呈显著性逐年线性递减趋势,这对于风能资源的开发利用是有利的;全球海域的风能资源总储量、有效储量和技术开发量分布特征都较为一致,大值区均分布于南北半球西风带海域,向低纬度逐渐递减,中国大部分海域的风能技术开发量都在2×103kW.h/m2以上。  相似文献   

11.
基于同化了30 a卫星高度计有效波高的全球高分辨率海浪再分析数据,该文详细分析波浪能分布特征,针对海浪的可开发性,提出一种新的波浪能资源选址评估方法,并利用该评估方法对全球和中国近海的波浪能进行区划。主要结论有:波浪能最为丰富处位于西风带海域,约占全球总波浪能的67%;其中,印度洋西风带尤甚,平均能流密度达90 kW/m,西风带近岸海域波浪能可利用程度较高;中国周边海域波浪能资源相对匮乏,但台湾岛东南部、琉球群岛以及东沙群岛附近波浪能资源较为丰富,可利用程度较高,平均能流密度最高约为11 kW/m,该研究可为波浪能发展规划与开发利用提供参考。  相似文献   

12.
The present work is the first attempt to methodologically assess the wave power prospects off the coast of Lebanon. Working around 1.5 years of buoy data, measurements for the significant wave height and wave period were inputted to establish a joint frequency table that was related to power matrixes of three selected wave energy converters. The spatial and temporal representability of the analysis was extended through assessing altimeter data of Hs over 20 years and for three points off the coast of Lebanon; southern Lebanon, buoy location off the coast of Beirut, and northern Lebanon. The altimeter data indicated that Hs values as measured through the buoy is within 1 standard deviation of the offshore regional mean, however adopting the regional mean value of Hs would more than double the potential power from waves from 4.6 kW/m to 9.8 kW/m. This puts the wave resources in the lower end of what is ‘technically viable’ and therefore it can be concluded that, given the current state of technology, wave power cannot contribute to the 12% target of renewable energy in the Lebanese energy mix by 2020. A re-evaluation of the wave power prospects post-2020, based on an actual and more robust data collection system, is recommended.  相似文献   

13.
Offshore and nearshore wave energy assessment around the Korean Peninsula   总被引:1,自引:0,他引:1  
A wave resource assessment is presented for the region around the Korean peninsula. Offshore wave power was obtained from significant wave heights and peak periods, and wave directions hindcast for the period of 1979-2003. The spatial distributions for the seasonal and annual averaged wave power were obtained on a 1/6° grid covering the longitudes of 117-143°E and latitudes of 20-50°N. The highest monthly averaged wave power (25 kW/m) was observed on the southwestern side of the peninsula in winter. In order to obtain the wave power around Hongdo, numerical simulations were performed with respect to the monthly averaged waves. The correlation between the significant wave height and energy period was considered to adjust the nearshore wave power obtained by the numerical simulation. The correction procedure was validated from comparing the simulated data with wave buoy data.  相似文献   

14.
Hawaii is subject to direct approach of swells from distant storms as well as seas generated by trade winds passing through the islands. The archipelago creates a localized weather system that modifies the wave energy resources from the far field. We implement a nested computational grid along the major Hawaiian Islands in the global WaveWatch3 (WW3) model and utilize the Weather Research and Forecast (WRF) model to provide high-resolution mesoscale wind forcing over the Hawaii region. Two hindcast case studies representative of the year-round conditions provide a quantitative assessment of the regional wind and wave patterns as well as the wave energy resources along the Hawaiian Island chain. These events of approximately two weeks each have a range of wind speeds, ground swells, and wind waves for validation of the model system with satellite and buoy measurements. The results demonstrate the wave energy potential in Hawaii waters. While the episodic swell events have enormous power reaching 60 kW/m, the wind waves, augmented by the local weather, provide a consistent energy resource of 15–25 kW/m throughout the year.  相似文献   

15.
In the present work, in order to investigate the nearshore wave energy resources, the third-generation wave model SWAN is utilised to simulate wave parameters of the Shandong peninsula in China for 16 years (1996–2011). The wind parameters used to simulate waves are obtained by the Weather Research & Forecasting Model (WRF). The modelling results of wave are validated by observation data. The spatial distributions of significant wave height and wave energy density are analysed under both extreme and mean wave conditions. The wave energy resources of the Chengshantou headland, with the highest wave energy density, the Langyatai headland and the Yellow River Delta are also studied in detail. For the above three sites, the mean month averaged wave energy is investigated, the wave energy resources are characterised in terms of wave state parameters, and wave energy roses are introduced. The values of extreme high and time-averaged nearshore wave energy density are 296 kW/m and 5.1 kW/m respectively.  相似文献   

16.
The study focuses around the energetic waters of Scotland that has expressed high interest in the development of wave energy farms. There are only a few long-term suitable studies characterising coastal locations. A detail coastal resource assessment is provided, focusing on wave energy and site characterisation. Mean nearshore energy content in the Western coasts is ≥50?kW/m and on the East ≈10?kW/m. Monthly and seasonal analyses outline available resource and annual variations. Availability of production is also examined, West coastlines present higher levels, however, depending on resource and wave converters operational range significant differences are shown. Availability levels on the East coastline are low ≈40% due to lower wave heights, while Western locations record consistently over 80% at both scenarios examined. Results discuss the potential applicability of favourable wave converters, and characteristics which achieve maximum utilisation based on the local environment.  相似文献   

17.
Remote communities, such as Haida Gwaii, Canada, often have high energy costs due to their dependence on diesel fuel for generation. Haida Gwaii's lengthy coastline, exposed to the northeast Pacific Ocean, provides opportunities for capturing wave energy to potentially reduce energy costs. A mixed integer optimization model of the Haida Gwaii network is used to develop an operational strategy indicative of realistic operator behaviour. Two offshore locations are analyzed where the annual mean theoretical wave power is 42 kW/m and 16 kW/m, respectively. Results from both models show that the wave energy resource in Haida Gwaii has the potential to reduce the operational cost of energy and carbon dioxide emissions. A maximum allowable capital cost, above which the overall cost of energy would increase, is determined for various levels of installed wave capacity. Offshore transmission cost estimates are included, as well as the effects of the offshore transmission distance.  相似文献   

18.
利用欧洲中期天气预报中心近37 a(1979年1月—2015年12月)ERA-interim高分辨率(0.125°×0.125°)波浪再分析数据,计算南海海域的波浪能流密度、有效波高、平均周期、有效波时等波浪能参数,分析南海海域的波浪能资源时空分布特征。研究表明:1)南海波浪能资源呈现明显的季节分布特征,冬季资源最丰富,秋季次之,夏季最贫乏;2)波浪能资源丰富区位于吕宋海峡—中南半岛东南海域一线,呈东北—西南走向,大值区为吕宋海峡附近海域,波浪能流密度高达16 kW/m;3)综合考虑能流密度、有效波时间、与大陆最近港口距离和岛礁面积,建议A(112.33°E,16.81°N)岛屿作为开发利用的首选。  相似文献   

19.
As a renewable energy, the assessment of wave power potential around a country is crucial. Knowledge of the temporal and spatial variations of wave energy is required for locating a wave power plant. This study investigates the variations in wave power at 19 locations covering the Indian shelf seas using the ERA-Interim dataset produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). The ERA-Interim data is compared with the measured wave parameters in the Arabian Sea and the Bay of Bengal. Along the western shelf seas of India, the seasonal oscillations lead to variation of the wave power from the lowest seasonal mean value (2.6 kW/m) in the post-monsoon period (October–January) to the highest value (25.9 kW/m) in the south-west monsoon (June–September) period. Significant (10–20%) inter-annual variations are detected at few locations. The mean annual wave power along the eastern Indian shelf seas (2.6–9.9 kW/m) is lower than the mean annual wave power along the western part (7.9–11.3 kW/m). The total annual mean wave power available along the western shelf seas of India is around 19.5 GW. Along the eastern shelf seas, it is around 8.7 GW. In the Indian Shelf seas, the annual mean wave power is highest (11.3 kW/m) at the southern location (location 11), and the seasonal variation in wave power is also less. Hence, location 11 is a better location for a wave power plant in the Indian shelf seas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号