首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nano-sized TiO2 powders were prepared by controlled hydrolysis of TiCl4 and Ti(O-i-C3H7)4 solutions and nitrided in flowing NH3 gas at 700°–1000°C to form TiN. Nano-sized TiN was densified by spark plasma sintering at 1300°–1600°C to produce TiN ceramics with a relative density of 98% at 1600°C. The microstructure of the etched ceramic surface was observed by SEM, which revealed the formation of uniformly sized 1–2 μm grains in the TiCl4-derived product and 10–20 μm in the Ti(O-i-C3H7)4-derived TiN. The electric resisitivity and Vickers micro-hardness of the TiN ceramics was also measured.  相似文献   

2.
A promising way to improve the performance of piezoelectric ceramics is grain orientation by templated grain growth. In this work lead-based piezoelectric ceramics Pb(Mg1/3Nb2/3)0.68Ti0.32O3 (PMN–32PT) and Pb(Mg1/3Nb2/3)0.42(Ti0.638Zr0.362)0.58O3 (PMN–37PT–21PZ) ceramics were textured via templated grain growth process. For texturization (001)-oriented BaTiO3 (BT) platelets (approximately 10 μm × 10 μm × 2 μm) were utilized as templates. The texturized ceramics were accomplished by aligning the templates by tape casting. The template growth into the matrix resulted in textured ceramics with Lotgering factors between 0.94 and 0.99 for both compositions. Consequences of the texture are enhanced dielectric and piezoelectric properties. Unipolar strain-field measurements of textured ceramics showed 0.25% strain s 33 at 3 kV/mm. Large signal d 33* of up to 878 pm/V were determined directly from strain measurements. Compared with randomly oriented ceramics in texturized samples unipolar strain s 33 and large signal d 33* was enhanced by a factor of up to 1.8.  相似文献   

3.
(Yb x Gd1− x )2Zr2O7 (0≤ x ≤1.0) ceramic powders synthesized with the chemical-coprecipitation and calcination method were pressureless-sintered at 1550–1700°C to develop new thermal barrier oxides with a lower thermal conductivity than yttria-stabilized zirconia ceramics. (Yb x Gd1− x )2Zr2O7 ceramics exhibit a defective fluorite-type structure. The linear thermal expansion coefficients of (Yb x Gd1− x )2Zr2O7 ceramics increase with increasing temperature from room temperature to 1400°C. The measured thermal conductivity of (Yb x Gd1− x )2Zr2O7 ceramics first gradually decrease with increasing temperature and then slightly increase above 800°C because of the increased radiation contribution. YbGdZr2O7 ceramics have the lowest thermal conductivity among all the composition combinations studied.  相似文献   

4.
The pyroelectric and electrostrictive properties of lead zinc niobate–lead titanate–barium titanate (PZN–BT–PT) ceramic solid solution were investigated. These properties of the (1 – x )PZN · x BT series were qualitatively explained with a composition fluctuation model. The pyroelectric depolarization temperatures of (1 – x – y )PZN · x BT · y PT ceramics were utilized to select compositions for room-temperature electrostrictive applications. Among them, 0.85PZN · 0.10BT · 0.05PT ceramic with Q 11= 0.018 m4/ C2, Q 12=−0.0085 m4/C2, s 2 at 25 kV/cm =−6.1 × 10−4, T max= 75°C at 1kHz, and T t= 27°C shows optimum properties for micropositioner applications.  相似文献   

5.
Submicrometer-sized, pure calcium hydroxyapatite (HA, (Ca10(PO4)6(OH)2)) and β-tricalcium phosphate (β-TCP, Ca3(PO4)2) bioceramic powders, that have been synthesized via chemical precipitation techniques, were used in the preparation of aqueous slurries that contained methyl cellulose to manufacture porous (70%–95% porosity) HA or β-TCP ceramics. The pore sizes in HA bioceramics of this study were 200–400 μm, whereas those of β-TCP bioceramics were 100–300 μm. The pore morphology and total porosity of the HA and β-TCP samples were investigated via scanning electron microscopy, water absorption, and computerized tomography.  相似文献   

6.
Sodium bismuth titanates Na1/2Bi1/2TiO3 (NBT) doped with 0–3 wt% Er2O3 were prepared by the conventional solid-state reaction method. The X-ray diffraction results revealed that the sintered Er-doped NBT ceramics exhibited a pure perovskite structure with Er3+ concentrations ranging from 0 to 1 wt%. At a low Er2O3 concentration, the Er-doped NBT ceramics showed enhanced electrical properties with dielectric constant ɛ33T0=636, a low dielectric dissipation factor (tan δ=3.3%), a low coercive field ( E c=4.56 kV/mm), and a high piezoelectric constant ( d 33=75 pC/N). The relationship between the composition and properties of Er-doped NBT ceramics has been discussed.  相似文献   

7.
K x Ba1− x Ga2− x Ge2+ x O8 (0.6≤ x ≤1) polycrystalline ceramics are potential materials for glass-free low-temperature cofired ceramics (LTCC) substrates. We have made a comprehensive study of the kinetics of the monoclinic-to-monoclinic P 21/ a ⇔ C 2/ m phase transition. The low-temperature-stable P 21/ a phase with a high Q × f value was synthesized using a subsolidus method and was well sintered at the LTCC temperature with a H3BO3 additive. A good combination of low sintering temperature (910°–920°C), high Q × f values (96 700–104 500 GHz), low permittivities (5.6–6.0), and a small temperature coefficient of resonant frequency (∼−20 ppm/°C) was obtained for ceramics with x =0.67 and 0.9 and with 0.1 wt% of H3BO3.  相似文献   

8.
Lead-free piezoelectric ceramics (Na1− x K x )(Nb1− y Sb y )O3+ z mol% MnO2 have been prepared by a conventional solid-state sintering technique. Our results reveal that Sb5+ diffuses into the K0.5Na0.5NbO3 lattices to form a solid solution with a single-phase orthorhombic perovskite structure. The partial substitution of Sb5+ for B-site ion Nb5+ decreases the paraelectric cubic-ferroelectric tetragonal phase transition ( T c) and the ferroelectric tetragonal-ferroelectric orthorhombic phase transition ( T O–F), and retains strong ferroelectricity. A small amount of MnO2 is enough to improve the densification of the ceramics. The co-effects of MnO2 doping and Sb substitution lead to significant improvements in ferroelectric and piezoelectric properties. The ceramics with x =0.45–0.525, y =0.06–0.08, and z =0.5–1 exhibit excellent ferroelectric and piezoelectric properties: d 33=163–204 pC/N, k P=0.47–0.51, k t=0.46–0.52, ɛ=640–1053, tan δ=1.3–3.0%, P r=18.1–22.6 μC/cm2, E c=0.72–0.98 kV/mm, and T C=269°–314°C.  相似文献   

9.
(Bi1/2Na1/2)TiO3 with 0–6 mol% Ba(Cu1/2W1/2)O3 (BNT-BCW), a new member of the BNT-based group, has been prepared following the conventional mixed oxide route. The compacted bodies were sintered at 1130°C for 2 h to get dense ceramics. The addition of BCW into BNT ceramics facilitated the poling process because of a reduction in leakage current. 0.995BNT·0.005BCW ceramics exhibit a relatively high piezoelectric constant ( d 33= 80 × 10−12 C/N) and a relatively low dielectric loss (tan δ= 1.5%). Increased amount of BCW was found to increase the dielectric constant and loss of BNT-BCW ceramics and to suppress the grain growth. During sintering, some BCW diffuses into the lattice of BNT to form a solid solution and some remains on the grain boundaries.  相似文献   

10.
Novel calcium phosphate ceramics were fabricated by hot-pressing fibrous products extracted from crystallized products of calcium ultraphosphate glasses by aqueous leaching. The ceramics were dense materials with a relative density of >95%; these ceramics were composite materials that consisted of β-Ca(PO3)2 fibrous crystals with CaO–P2O5 glass, which was formed during hot pressing, as the matrix phase. These ceramics showed a high bending strength of 150–220 MPa and a low Young's modulus of 30–60 GPa. The high toughness contributed to the high strength, with fiber pull-out and crack deflection observed as the primary toughening mechanism.  相似文献   

11.
Conventional sintering of (Na1− x K x )0.5Bi0.5TiO3 (abbreviated as NKBT x , x =18–22 mol%) lead-free piezoelectric ceramics was investigated to clarify the optimal sintering temperature for densification and electrical properties. Both sintered density and electrical properties were sensitive to sintering temperature; particularly, the piezoelectric properties deteriorated when the ceramics were sintered above the optimum temperature. The NKBT20 and NKBT22 ceramics synthesized at 1110°–1170°C showed a phase transition from tetragonal to rhombohedral symmetry, which was similar to the morphotropic phase boundary (MPB). Because of such MPB-like behavior, the highest piezoelectric constant ( d 33) of about 192 pC/N with a high electromechanical coupling factor ( k p) of about 32% were obtained in the NKBT22 ceramics sintered at 1150°C.  相似文献   

12.
The influence of rare-earth additives, such as La, Nd, Sm, and Gd, and poling conditions on the electromechanical properties of (Pb1−3 x /2Ln x )(Ti0.98Mn0.02)O3 compositions, x = 0.04–0.12, were investigated. The type and amount of additive were found to affect the lattice anisotropy, dielectric constant, and electromechanical properties. A large electromechanical anisotropy ( k t / k p ) could be obtained in 10 mol% Sm-modified and 8 mol% Gd-modified lead titanate ceramics, and seemed to correlate to a low Poisson's ratio.  相似文献   

13.
Forsterite (Mg2SiO4) ceramics were prepared using Mg(OH)2 and SiO2 as precursors, and the effect of powder characteristics of Mg(OH)2 on calcination and sintering was investigated. The use of highly dispersed Mg(OH)2 powder (HD powder) resulted in a lower calcination temperature. Forsterite powder of high homogeneity and small particle size prepared from the HD powder enabled synthesis of high-density forsterite ceramics by ordinary sintering without applying external pressure. Moreover, transparent forsterite ceramics were successfully synthesized through addition of excess Mg to the precursors to compensate for Mg evaporated during the sintering process. Subsequent dielectric measurements revealed that the transparent forsterite ceramics had a very low dielectric loss (tan δ<10−4).  相似文献   

14.
Low-thermal-expansion ceramics having arbitrary thermal expansion coefficients were synthesized from homogeneous solid solutions in the system KZr2(PO4)3─KTi2(PO4)3 (KZP–KTP). Dense and strong ceramics were fabricated by sintering at 1100° to 1200°C with 2 wt% MgO. The thermal expansion coefficient increased from 0 to +3 × 10−6/°C with increasing x in KZr2 − xTix (PO4)3 (KZTP). In addition, a functionally gradient material with respect to thermal expansion was prepared by forming a series of KZTP solid solutions in a single ceramic body. By heating a pile of KZP and KTP ceramics in contact with each other, KZP and KTP bonded together to form a KZTP gradient solid solution near the interface.  相似文献   

15.
Glasses in the Na2O–Ba0–A12O3-Si02 system, nucleated with TiO2, were heat-treated to effect controlled crystallization. Resulting materials consisted of a dense, micro-crystalline mixture of nepheline (Na20–A12O3-2SiO2) and barium feldspar (BaO-A12O3-2Si02) in a glassy matrix. Thermal expansion coefficients (O° to 300° C) of these bodies ranged from 75 to 125 × 10 –7/°C. Glazes in the Na2O-CaO-PbO-B2O2-A1203-SiO2 system having expansion coefficients of about 40 to 80 × 10 -7/0°C were applied to the glass-ceramics. On firing, the glazes matured well and reacted with the bodies to form interlocking crystals at the interface. This interfacial region was investigated using several instrumental techniques, and the crystals were identified as plagioclase feldspar. Applying these compressive glazes resulted in modular of rupture up to five times that of the initial glass-ceramic. Calculated strengths correlated well with experimental values.  相似文献   

16.
Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 ceramics of pure perovskite structure were prepared by the two-stage method with the addition of 0–3.0 wt% MnO2 and their piezoelectric properties were investigated systematically. The MnO2 addition influences in a pronounced way both the crystal structure and the microstructure of the materials. The materials are transformed from the tetragonal to the rhombohedral structure, and the grain size is enhanced when manganese cations are added. The distortion of crystal structure for samples with MnO2 addition can be explained by the Jahn–Teller effect. The values of electromechanical coupling factor ( k p) and dielectric loss (tan δ) are optimized for 0.5-wt%-MnO2-doped samples ( k p= 0.60, tan δ= 0.2%) and the mechanical quality factor ( Q m) is maximized for 1.0-wt%-MnO2-doped samples ( Q m= 1041), which suggests that oxygen vacancies formed by substituting Mn3+ and Mn2+ ions for B-site ions (e.g., Ti4+ and Zr4+ ions) in the perovskite structure partially inhibited polarization reversal in the ferroelectrics. The ceramics with 0.50–1.0 wt% MnO2 addition show great promise as practical materials for piezoelectric applications.  相似文献   

17.
Ceramics with the chemical compositions of Pb1− x La2 x /3(Nb0.95Ti0.0625)2O6 (0≤ x ≤0.060) (PLTN) were prepared by the conventional solid-state reaction method. X-ray diffraction analysis indicated that Ti and La doping not only decreased the rhombohedral–tetragonal phase transformation temperature, but also stabilized the orthorhombic phase of PLTN ceramics. All ceramics sintered at 1190°–1250°C had shown the pure orthorhombic ferroelectric phase. La doping suppresses grain growth and inhibits the formation of pores and cracks, resulting in an increase in relative density up to 97%. The amount of La doping to PLTN ceramics obviously affect ceramics' piezoelectric constant ( d 33) and dielectric loss (tanδ). The sample with x =0.015 possesses high Curie temperature ( T c=560°C), low dielectric loss (tanδ=0.0054), and excellent piezoelectric constant ( d 33=92 pC/N), presenting a high potential to be used in high-temperature applications as piezoelectric transducers.  相似文献   

18.
Textured 0.94Na0.5Bi0.5TiO3–0.06BaTiO3 (NBT–6BT) ceramics were fabricated by templated grain growth (TGG) using anisotropically shaped Na0.5Bi0.5TiO3 (NBT) templates. Platelet NBT was synthesized by the topochemical technique, using precursor Na0.5Bi4.5Ti4O15 (NBIT). The NBT particles have an average length of 10–15 μm and a thickness of 1 μm, which are suitable templates for obtaining textured ceramics (especially NBT-based ceramics) by the TGG process. This study revealed that the NBT templates are effective in inducing grain orientation in NBT–6BT ceramics. For NBT–6BT ceramics textured with 5 vol% NBT templates, a Lotgering factor of 0.87 and a d 33 of 299 pC/N are given.  相似文献   

19.
Microstructure characteristics, phase transition, and electrical properties of (Na0.535K0.485)0.926Li0.074(Nb0.942Ta0.058)O3 (NKN-LT) lead-free piezoelectric ceramics prepared by normal sintering are investigated with an emphasis on the influence of sintering temperature. Some abnormal coarse grains of 20–30 μm in diameter are formed in a matrix consisting of about 2 μm fine grains when the sintering temperature was relatively low (980°C). However, only normally grown grains were observed when the sintering temperature was increased to 1020°C. On the other hand, orthorhombic and tetragonal phases coexisted in the ceramics sintered at 980°–1000°C, whereas the tetragonal phase becomes dominant when sintered above 1020°C. For the ceramics sintered at 1000°C, the piezoelectric constant d 33 is enhanced to 276 pC/N, which is a high value for the Li- and Ta-modified (Na,K)NbO3 ceramics system. The other piezoelectric and ferroelectric properties are as follows: planar electromechanical coupling factor k p=46.2%, thickness electromechanical coupling factor k t=36%, mechanical quality factor Q m=18, remnant polarization P r=21.1 μC/cm2, and coercive field E c=1.85 kV/mm.  相似文献   

20.
Transparent PLZT(7/60/40) ceramics with large piezoelectric coefficients were obtained using a two-step sintering process with controlled oxygen partial pressure. Specifically, low-oxygen-pressure and low-temperature sintering were used in the first step, followed by a high-oxygen-pressure, high-temperature sintering cycle. High-density ceramics with small grain sizes of about 3 µm were prepared. As a result, k p= 0.71, k 33= 0.78, d 33= 850 × 10-12 C/N, and a transparency of 15% (λ= 610 nm, thickness of 1 mm) have been achieved; 20% improvement of d 33 was gained compared to conventional processed PLZT ceramics ( d 33= 710 × 10-12 C/N).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号