首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In future personal communications networks (PCNs) supporting network-wide handoffs, new and handoff requests will compete for connection resources in both the mobile and backbone networks. Forced call terminations due to handoff call blocking are generally more objectionable than new call blocking. The previously proposed guard channel scheme for radio channel allocation in cellular networks reduces handoff call blocking probability substantially at the expense of slight increases in new call blocking probability by giving resource access priority to handoff calls over new calls in call admission control. While the effectiveness of a fixed number of guard channels has been demonstrated under stationary traffic conditions, with nonstationary call arrival rates in a practical system, the achieved handoff call blocking probability may deviate significantly from the desired objective. We propose a novel dynamic guard channel scheme which adapts the number of guard channels in each cell according to the current estimate of the handoff call arrival rate derived from the current number of ongoing calls in neighboring cells and the mobility pattern, so as to keep the handoff call blocking probability close to the targeted objective while constraining the new call blocking probability to be below a given level. The proposed scheme is applicable to channel allocation over cellular mobile networks, and is extended to bandwidth allocation over the backbone network to enable a unified approach to prioritized call admission control over the ATM-based PCN  相似文献   

2.
The concept of adaptive admission control in cellular wireless networks ensures quality of service by reserving bandwidth for handoff calls. It is equally important in current second generation wireless systems as well as in the future IMT-2000 and UMTS systems. In order to ensure bounded call level QoS we propose to track the changes of the handoff call arrival rate and integrate this information in the admission algorithm. However, the handoff call arrival rate can vary when the new call arrival rate and/or user mobility vary. In our previous work we have analysed bandwidth reservation techniques needed to maintain a stable call level QoS when new call arrival rate is changing in a group, or groups, of wireless cells. This paper analyses bandwidth reservation techniques that are adaptive to the user mobility as well as to the changing new call arrival rate, and which can ensure stable call level QoS over a range of user mobilities. We also propose the technique to derive bandwidth reservation policy when the QoS characteristics over a range of user mobilities are given.  相似文献   

3.
In this paper, a distributed adaptive guard channel reservation (DAGCR) scheme is proposed to give priority to handoff calls. This scheme is built upon the concept of guard channels and it uses an adaptive algorithm to search automatically the optimal number of guard channels to be reserved at each base station. The quality‐of‐service (QoS) parameters used are the new and handoff call blockings. Simulation studies are performed to compare the present algorithm with the static guard channel policy. Simulation results show that this proposed algorithm guarantees the handoff call blocking probability to remain below the targeted threshold up to a substantially high offered load with a minimal blocking to new calls up to a moderate offered load and also shows significantly high channel utilization in all offered load conditions. This scheme is examined over a wide range of offered load. Thus, it seems the proposed scheme is very useful in controlling the blocking performances in wireless cellular networks. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
郑智华 《通信技术》2009,42(6):168-170
文章研究QoS优化下WCDMA系统的上行接入控制算法。从QoS分层结构,可度量参数出发,结合新用户呼叫到达率和用户切换到达率,提出WCDMA上行信号呼叫接入控制算法,考虑和平衡新接入用户阻塞率和已接入用户中断率。通过满足不同业务需要的QoS优化策略来控制上行允许接入用户,从而保证系统有稳定的通信质量。仿真分析结果表明,文中给出算法使系统阻塞率和掉话率下降,系统性能得到改善。  相似文献   

5.
This paper proposes a prioritized call admission control (CAC) model to support soft handoff calls with quality of service (QoS) assurances for both the uplink and downlink connections in a CDMA system. CAC is formulated as a combinatorial optimization problem in which the problem objective is to minimize the handoff forced termination rate. The model, which is based on the adaptive channel reservation (ACR) scheme for prioritized calls, adapts to changes in handoff traffic where the associated parameters (reserved channels, and new and handoff call arrival rates) can be varied. To solve the optimization model, iteration-based Lagrangean relaxation is applied by allocating a time budget. We express our achievements in terms of the problem formulation and performance improvement. Computational experiments demonstrate that the proposed ACR scheme outperforms other approaches when there are fewer rather than more channels, and it reduces the handoff call blocking rate more efficiently when the handoff traffic is heavily loaded. Moreover, the model can be adapted to any kind of reservation service.  相似文献   

6.
A traffic management scheme is proposed in a multicode code-division multiple-access system supporting soft handoff that uses guard channels and a queue for real-time traffic. Preemptive queue control gives priority to queued handoff calls. Handoff traffic is derived as a function of the new call arrival rate, the size of the soft handoff region, mobile speed, the new call blocking probability, and the handoff failure probability. System performance with K types of calls is analyzed by introducing a concept of effective channel. The effects of the number of guard channels, the number of effective channels, system capacity, and other factors are numerically investigated. The effectiveness of the proposed queue control scheme is also observed in terms of handoff processing delay  相似文献   

7.
Alfa  Attahiru Sule  Li  Wei 《Wireless Networks》2002,8(6):597-605
In this paper, the arrival of calls (i.e., new and handoff calls) in a personal communications services (PCS) network is modeled by a Markov arrival process (MAP) in which we allow correlation of the interarrival times among new calls, among handoff calls, as well as between these two kinds of calls. The PCS network consists of homogeneous cells and each cell consists of a finite number of channels. Under the conditions that both cell's residence time and the requested call holding time possess the general phase type (PH) distribution, we obtain the distribution of the channel holding times, the new call blocking probability and the handoff call failure probability. Furthermore, we prove that the cell residence time is PH distribution if and only if the new call channel holding time is PH distribution; or the handoff call channel holding time is PH distribution; or the call channel holding time is PH distribution;provided that the requested call holding time is a PH distribution and the total call arrival process is a MAP. Also, we prove that the actual call holding time of a non-blocked new call is a mixture of PH distributions. We then developed the Markov process for describing the system and found the complexity of this Markov process. Finally, two interesting measures for the network users, i.e., the duration of new call blocking period and the duration of handoff call blocking period, are introduced; their distributions and the expectations are then obtained explicitly.  相似文献   

8.
In this paper, a channel assignment scheme is proposed for use in CDMA/TDMA mobile networks carrying voice and data traffic. In each cell, three types of calls are assumed to compete for access to the limited number of available channels by the cell: new voice calls, handoff voice calls, and data calls. The scheme uses the movable boundary concept in both the code and time domains in order to guarantee the quality of service (QoS) requirements of each type. A traditional Markov analysis method is employed to evaluate the performance of the proposed scheme. Measures, namely, the new call blocking probability, the handoff call forced termination probability, the data call loss probability, the expected number of handoff and the handoff link maintenance probability are obtained from the analysis. The numerical results, which are validated by simulation, indicate that the scheme helps meet the QoS requirements of the different call types.  相似文献   

9.
The CAC (call admission control), which can guarantee call services to meet their QoS (Quality of Service) requirements, plays a significant role in providing QoS in wireless mobile networks. In this paper, an adaptive multiguard channel scheme‐based CAC strategy is proposed to prioritize traffic types and handoff calls. The major aim of the study is to develop the analytical model of the priority traffic and handoff calls based adaptive multiguard channel scheme and examining the performance through setting the value of the adaptive ratio parameters. Our proposed scheme tries to mediate the advantages and drawbacks of the static and dynamic CAC schemes. The proposed scheme is quite different from previous studies because multithreshold values have been considered for multiclass traffic by adaption parameters, and a closed form analytical model is developed The numerical results show that this scheme can be used to keep the targeted QoS requirement by suitably setting the adaptive ratio parameters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The next generation of mobile wireless networks has to provide the quality-of-service (QoS) for a variety of applications. One of the key generic QoS parameters is the call dropping probability, which has to be maintained at a predefined level independent of the traffic condition. In the presence of bursty data and the emerging multimedia traffic, an adaptive and dynamic bandwidth allocation is essential in ensuring this QoS. The paradox, however, is that all existing dynamic bandwidth allocation schemes require the prior knowledge of all traffic parameters or/and user mobility parameters. In addition, most proposals require extensive status information exchange among cells in order to dynamically readjust the control parameters, thus making them difficult to be used in actual deployment.In this paper, we introduce a novel adaptive bandwidth allocation scheme which estimates dynamically the changing traffic parameters through local on-line estimation. Such estimations are restricted to each individual cell, thus completely eliminating the signaling overhead for information exchange among cells. Furthermore, we propose the use of a probabilistic control policy, which achieves a high channel utilization, and leads to an effective and stable control. Through simulations, we show that our proposed adaptive bandwidth allocation scheme can guarantee the predetermined call dropping probability under changing traffic conditions while at the same time achieving a high channel utilization.  相似文献   

11.
This paper presents a new adaptive bandwidth allocation scheme to prevent handoff failure in wireless cellular networks, known as the measurement-based preassignment (MPr) technique. This technique is particularly useful in micro/pico cellular networks which offers quality-of-service (QoS) guarantee against call dropping. The proposed MPr scheme distinguishes itself from the well-known guarded channel (GC) based schemes in that it allows the handoff calls to utilize a prereserved channel pool before competing for the shared channels with new call arrivals. The key advantage of the proposed MPr scheme is that it enables easy derivation of the number of channels that needs to be reserved for handoff based on a predetermined handoff dropping probability, without the need for solving the often complex Markov chain required in GC schemes, thus, making the proposed MPr scheme simple and efficient for implementation. This is essential in handling multiple traffic types with potentially different QoS requirements. In addition, the MPr scheme is adaptive in that it can dynamically adjust the number of reserved channels for the handoff according to the periodical measurement of the traffic status within a local cell, thus completely eliminating the signaling overhead for status information exchange among cells mandated in most existing channel allocation schemes. Numerical results and comparisons are given to illustrate the tradeoff  相似文献   

12.
Future Personal Communication Networks (PCN) will employ microcells and picocells to support a higher capacity, thus increasing the frequency of handoff calls. Forced call terminations due to handoff call blocking are generally more objectionable than new call blocking. The proposed guard channel schemes for radio channel allocation in cellular networks reduce handoff call blocking probability at the expense of increases in new call blocking probability by giving resource access priority to handoff calls over new calls in call admission control. Under uniform traffic assumptions, it has been shown that a fixed number of guard channels leads to good performance results. In a more realistic system, non-uniform traffic conditions should be considered. In this case, the achieved call blocking probability may deviate significantly from the desired objective. In this paper, we propose a new adaptive guard channel scheme: New Adaptive Channel Reservation (NACR). In NACR, for a given period of time, a given number of channels are guarded in each cell for handoff traffic. An approximate analytical model of NACR is presented. Tabu search method has been implemented in order to optimize the grade of service. Discrete event simulations of NACR were run. The effectiveness of the proposed method is emphasized on a complex configuration.  相似文献   

13.
Emerging mobile wireless networks are characterized by significant uncertainties in mobile user population and system resource state. Such networks require adaptive resource management that continuously monitor the system and dynamically adjust resource allocations for adherence to the desired system performance requirements. We propose adaptive resource management technique based on control theory. The controller dynamically solves resource allocation problem using feedback control laws. In the base algorithm, the number of guard channels is dynamically adjusted by feeding back the current handoff call dropping probability. The base algorithm is then enhanced in two ways: feeding back the instantaneous number of handoff calls and by probabilistically implementing a fractional number of guard channels. We study the effects of parameter choices on the performance of the proposed algorithms using discrete event simulation. Simulation results indicate that the feedback controllers can guarantee the predetermined call dropping probability under a variety of traffic conditions, and so can utilize the scarce wireless resource efficiently by accepting more new calls.  相似文献   

14.
We analyze a hierarchical cellular system with finite queues for new and handoff calls. Both the effect of the reneging of waiting new calls because of the callers' impatience and the effect of the dropping of queued handoff calls as the callers move out of the handoff area are considered, besides the effect of the guard channel scheme. We successfully solve the system by adopting the multidimensional Markovian chain and using the transition-probability matrix and the signal-flow graph to obtain the average new-call blocking probability, the forced termination probability, and the average waiting time of queued new and handoff calls. We further investigate how the design parameters of the buffer sizes and guard channel numbers in macrocell and microcells affect the performance of the hierarchical cellular system. The results show that provision of a buffering scheme and guard channel scheme can effectively reduce the new call blocking probability and the forced termination probability in the hierarchical cellular system, and the effectiveness is more significant in the macrocell than in the microcells  相似文献   

15.
In this article, we propose new methods to reduce the handoff blocking probability in the 3rd Generation Partnership Project Long Term Evolution wireless networks. This reduction is based on an adaptive call admission control scheme that provides QoS guarantees and gives the priority of handoff call over new call in admission. The performance results of the proposed schemes are compared with other competing methods using simulation analysis. Simulation results show the major impact on the performance of the 3rd Generation Partnership Project Long Term Evolution network, which is reflected in increased resource utilization ratio to (99%) and in the ability in satisfying the requirements of QoS in terms of call blocking probability (less than 0.0628 for Voice over IP service) and dropping probability rate (less than 0.0558).Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Li  Bo  Lin  Chuang  Chanson  Samuel T. 《Wireless Networks》1998,4(4):279-290
In this paper, we propose and analyze the performance of a new handoff scheme called hybrid cutoff priority scheme for wireless networks carrying multimedia traffic. The unique characteristics of this scheme include support for N classes of traffic, each may have different QoS requirements in terms of number of channels needed, holding time of the connection and cutoff priority. The proposed scheme can handle finite buffering for both new calls and handoffs. Futhermore, we take into consideration the departure of new calls due to caller impatience and the dropping of queued handoff calls due to unavailability of channels during the handoff period. The performance indices adopted in the evaluation using the Stochastic Petri Net (SPN) model include new call and handoff blocking probabilities, call forced termination probability, and channel utilization for each type of traffic. Impact on the performance measures by various system parameters such as queue length, traffic input and QoS of different traffic has also been studied. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
In this paper a new control-period-based distributed adaptive guard channel reservation (CDAGCR) technique is proposed to meet the call admission level quality-of-service (QoS) in wireless cellular networks. It partitions the real time into control periods. Handoffs during the current control period is used to reserve guard channels at the beginning of the next control period. Efficient mechanisms are devised to adaptively vary the length of the control period which further regulates the number of guard channels used to meet the call admission level QoS. The BSC associated with the cell site can do this exclusively without generating any signal overhead for information exchange among cell sites unlike the schemes described in [14]. Thus, the CDAGCR scheme is amenable to a fully distributed implementation. Extensive simulation studies have been carried out with an emulated test bed to investigate the performance of this CDAGCR scheme. It is found that this CDAGCR scheme keeps the handoff call drop probability below the targeted QoS with comparable new call blocking by adaptively varying the length of the control period. The simulation results appear promising.  相似文献   

18.
The next generation (NG) wireless networks are expected to provide mobile users with the real-time multimedia services. High sensitivity to time constraints like delay and jitter is one of the important characteristics of the multimedia traffic. In order to maintain a certain quality of service (QoS) level, the handoff latency should be minimized. Furthermore, if the new cell is not ready at the actual handoff time, the handoff call may be even forced terminated. Hence, the handoff preparation latency directly affects the performance of the cellular networks in terms of QoS support and the handoff blocking probability. In this paper, we present the expected visitor list (EVL) method to achieve reduced handoff blocking probability and maintain a certain QoS level in the network by minimizing handoff preparation latency. The handoff signaling decomposition is introduced to make the neighbor cells aware of the resource demands and QoS requirements of the mobile terminal before the actual handoff time. The obtained information about the prospective active mobile terminal is stored in an EVL entry at the neighbor cells. The call admission control (CAC) with QoS-provisioning is run against each EVL entry. According to the CAC result, the network preparation algorithms are executed and the results are stored in the entry. No resource reservation or allocation is performed in advance, and the varying network conditions are reflected to validity and admission status of the entries. The results of handoff preparation algorithms stored in the EVL entry are activated at the actual handoff time and hence the handoff latency is minimized. Performance evaluation through mathematical analysis and extensive simulation experiments show that the EVL method reduces handoff latency and hence handoff call blocking probability significantly without introducing high overhead.Özgür B. Akan received the B.S. and M.S. degrees in electrical and electronics engineering from Bilkent University and Middle East Technical University, Ankara, Turkey, in 1999 and 2001, respectively. He received the Ph.D. degree in electrical and computer engineering from the Broadband and Wireless Networking Laboratory, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, in 2004. He is currently an Assistant Professor with the Department of Electrical and Electronics Engineering, Middle East Technical University. His current research interests include sensor networks, next-generation wireless networks, and deep space communication networks.Buyurman Baykal received his B.Sc. (High Hons.) degree in Electrical and Electronics Engineering from Middle East Technical University in 1990; M.Sc. (Distinction) and Ph.D. degrees in 1992 and 1995 from Imperial College of Science, Technology and Medicine. Dr. Baykal has research and teaching interests in speech processing, signal processing for telecommunications, and communication networks. He has extensive experience both in the theory and applications of adaptive signal processing techniques to communication applications such as acoustic echo cancellation, noise reduction, channel equalization and digital receiver design through self-conducted research and industry-funded research projects. He conducts research and implementation work on low bit rate speech coding and content based indexing of audio signals. He is also involved in communication network research with particular interest in ATM/IP design aspects, wireless networks and network management issues. Dr. Baykal is an Associate Editor of Computer Networks (Elsevier Science), Sensor Letters (American Scientific Publishing), a past Associate Editor of the IEEE Transactions on Circuits and Systems Part II—Analog and Digital Signal Processing (TCAS-II). He authored and co-authored over 50 technical papers.  相似文献   

19.
The soft handoff call requests of real-time services in third-generation (3G) direct-sequence code-division multiple access (DS-CDMA) and first- and second-generation cellular systems are more important than new call requests from the viewpoint of quality of service (QoS). Rejection of soft handoff requests causes forced termination of an ongoing real-time call, which is a severer problem than blocking of new call attempts. An admission control scheme that can guarantee a higher QoS for the soft handoff requests of real-time services in 3G DS-CDMA systems is proposed for delay-sensitive voice and delay-tolerant stream-type data services. The proposed scheme (P-Scheme) accommodates both voice and data services by utilizing the full bandwidth. However, voice soft handoff call requests are given priority over new voice call and stream-type data packet requests by suppressing interference from stream-type data services according to voice soft handoff requests, and by varying interference levels. Performance of the P-Scheme is evaluated using a Markovian model. Results are compared with a conventional reservation scheme (C-Scheme) that reserves resources exclusively for voice soft handoff requests. Numerical results show that system performance can be significantly improved using the proposed P-Scheme, compared with the conventional C-Scheme, when various types of service are supported in third-generation DS-CDMA systems.  相似文献   

20.
Dynamic channel reservation based on mobility in wireless ATMnetworks   总被引:1,自引:0,他引:1  
We present a dynamic channel reservation scheme to improve the utilization of wireless network resources while guaranteeing the required QoS of handoff calls. The wireless channels are dynamically reserved by using the request probability determined by the mobility characteristics and channel occupancy to guarantee acceptable quality of handoff calls and keep the new call blocking probability as low as possible  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号