首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metal-insulator-metal (MIM) capacitors with (HfO/sub 2/)/sub 1-x/(Al/sub 2/O/sub 3/)/sub x/ high-/spl kappa/ dielectric films were investigated for the first time. The results show that both the capacitance density and voltage/temperature coefficients of capacitance (VCC/TCC) values decrease with increasing Al/sub 2/O/sub 3/ mole fraction. It was demonstrated that the (HfO/sub 2/)/sub 1-x/(Al/sub 2/O/sub 3/)/sub x/ MIM capacitor with an Al/sub 2/O/sub 3/ mole fraction of 0.14 is optimized. It provides a high capacitance density (3.5 fF//spl mu/m/sup 2/) and low VCC values (/spl sim/140 ppm/V/sup 2/) at the same time. In addition, small frequency dependence, low loss tangent, and low leakage current are obtained. Also, no electrical degradation was observed for (HfO/sub 2/)/sub 1-x/(Al/sub 2/O/sub 3/)/sub x/ MIM capacitors after N/sub 2/ annealing at 400/spl deg/C. These results show that the (HfO/sub 2/)/sub 0.86/(Al/sub 2/O/sub 3/)/sub 0.14/ MIM capacitor is very suitable for capacitor applications within the thermal budget of the back end of line process.  相似文献   

2.
Low-frequency noise measurements were performed on p- and n-channel MOSFETs with HfO/sub 2/, HfAlO/sub x/ and HfO/sub 2//Al/sub 2/O/sub 3/ as the gate dielectric materials. The gate length varied from 0.135 to 0.36 /spl mu/m with 10.02 /spl mu/m gate width. The equivalent oxide thicknesses were: HfO/sub 2/ 23 /spl Aring/, HfAlO/sub x/ 28.5 /spl Aring/ and HfO/sub 2//Al/sub 2/O/sub 3/ 33 /spl Aring/. In addition to the core structures with only about 10 /spl Aring/ of oxide between the high-/spl kappa/ dielectric and silicon substrate, there were "double-gate oxide" structures where an interfacial oxide layer of 40 /spl Aring/ was grown between the high-/spl kappa/ dielectric and Si. DC analysis showed low gate leakage currents in the order of 10/sup -12/A(2-5/spl times/10/sup -5/ A/cm/sup 2/) for the devices and, in general, yielded higher threshold voltages and lower mobility values when compared to the corresponding SiO/sub 2/ devices. The unified number-mobility fluctuation model was used to account for the observed 1/f noise and to extract the oxide trap density, which ranged from 1.8/spl times/10/sup 17/ cm/sup -3/eV/sup -1/ to 1.3/spl times/10/sup 19/ cm/sup -3/eV/sup -1/, somewhat higher compared to conventional SiO/sub 2/ MOSFETs with the similar device dimensions. There was no evidence of single electron switching events or random telegraph signals. The aim of this paper is to present a general discussion on low-frequency noise characteristics of the three different high-/spl kappa//gate stacks, relative comparison among them and to the Si--SiO/sub 2/ system.  相似文献   

3.
A gate-first self-aligned Ge n-channel MOSFET (nMOSFET) with chemical vapor deposited (CVD) high-/spl kappa/ gate dielectric HfO/sub 2/ was demonstrated. By tuning the thickness of the ultrathin silicon-passivation layer on top of the germanium, it is found that increasing the silicon thickness helps to reduce the hysteresis, fixed charge in the gate dielectric, and interface trap density at the oxide/semiconductor interface. About 61% improvement in peak electron mobility of the Ge nMOSFET with a thick silicon-passivation layer over the CVD HfO/sub 2//Si system was achieved.  相似文献   

4.
Charge in HfO/sub 2/ gate stacks grown from various metal-organic chemical vapor deposition sources has been studied using nMOS capacitors with a damage-free Cr gate process. It is found that the charge in the stack is mainly concentrated at the interfaces between materials. The effect of postdeposition anneal depends on the high-/spl kappa/ film-deposition chemistry. A forming gas anneal can reduce interface charge, hysteresis, and interface state densities for HfO/sub 2/ films grown from various sources. The marked difference in the annealing response of similar films deposited from different precursors, however, strongly suggests that charge in these stacks is related to the deposition chemistry and may be due to residual impurities or defects left in the film from the deposition.  相似文献   

5.
Building on a previously presented compact gate capacitance (C/sub g/-V/sub g/) model, a computationally efficient and accurate physically based compact model of gate substrate-injected tunneling current (I/sub g/-V/sub g/) is provided for both ultrathin SiO/sub 2/ and high-dielectric constant (high-/spl kappa/) gate stacks of equivalent oxide thickness (EOT) down to /spl sim/ 1 nm. Direct and Fowler-Nordheim tunneling from multiple discrete subbands in the strong inversion layer are addressed. Subband energies in the presence of wave function penetration into the gate dielectric, charge distributions among the subbands subject to Fermi-Dirac statistics, and the barrier potential are provided from the compact C/sub g/-V/sub g/ model. A modified version of the conventional Wentzel-Kramer-Brillouin approximation allows for the effects of the abrupt material interfaces and nonparabolicities in complex band structures of the individual dielectrics on the tunneling current. This compact model produces simulation results comparable to those obtained via computationally intense self-consistent Poisson-Schro/spl uml/dinger simulators with the same MOS devices structures and material parameters for 1-nm EOTs of SiO/sub 2/ and high-/spl kappa//SiO/sub 2/ gate stacks on (100) Si, respectively. Comparisons to experimental data for MOS devices with metal and polysilicon gates, ultrathin dielectrics of SiO/sub 2/, Si/sub 3/N/sub 4/, and high-/spl kappa/ (e.g., HfO/sub 2/) gate stacks on (100) Si with EOTs down to /spl sim/ 1-nm show excellent agreement.  相似文献   

6.
Ultrathin nMOSFET hafnium oxide (HfO/sub 2/) gate stacks with TiN metal gate and poly-Si gate electrodes are compared to study the impact of the gate electrode on long term threshold instability reliability for both dc and ac stress conditions. The poly-Si/high-/spl kappa/ interface exhibits more traps due to interfacial reaction than the TiN/high-/spl kappa/ interface, resulting in significantly worse dc V/sub th/ instability. However, the V/sub th/ instability difference between these two stacks decreases and eventually diminishes as ac stress frequency increases, which suggests the top interface plays a minor role in charge trapping at high operating frequency. In addition, ac stress induced interface states (Nit) can be effectively recovered, resulting in negligible G/sub m/ degradation.  相似文献   

7.
Low-frequency noise measurements were performed on p- and n-channel MOSFETs with HfO/sub 2/, HfAlO/sub x/ and HfO/sub 2//Al/sub 2/O/sub 3/ as the gate dielectric materials. The gate length varied from 0.135 to 0.36 /spl mu/m with 10.02 /spl mu/m gate width. The equivalent oxide thicknesses were: HfO/sub 2/ 23 /spl Aring/, HfAlO/sub x/ 28.5 /spl Aring/ and HfO/sub 2//Al/sub 2/O/sub 3/ 33 /spl Aring/. In addition to the core structures with only about 10 /spl Aring/ of oxide between the high-K dielectric and silicon substrate, there were "double-gate oxide" structures where an interfacial oxide layer of 40 /spl Aring/ was grown between the high-K dielectric and Si. DC analysis showed low gate leakage currents in the order of 10/sup -12/ A(2-5 /spl times/ 10/sup -5/ A/cm/sup 2/) for the devices and, in general, yielded higher threshold voltages and lower mobility values when compared to the corresponding SiO/sub 2/ devices. The unified number-mobility fluctuation model was used to account for the observed 1/f noise and to extract the oxide trap density, which ranged from 1.8 /spl times/ 10/sup 17/ cm/sup -3/ eV/sup -1/ to 1, 3 /spl times/ 10/sup 19/ cm/sup -3/ eV/sup -1/ somewhat higher compared to conventional SiO/sub 2/ MOSFETs with the similar device dimensions. There was no evidence of single electron switching events or random telegraph signals. The aim of this paper is to present a general discussion on low-frequency noise characteristics of the three different high-K/gate stacks, relative comparison among them and to the Si-SiO/sub 2/ system.  相似文献   

8.
Dielectric relaxation currents in SiO/sub 2//Al/sub 2/O/sub 3/ and SiO/sub 2//HfO/sub 2/ high-/spl kappa/ dielectric stacks are studied in this paper. We studied the thickness dependence, gate voltage polarity dependence and temperature dependence of the relaxation current in high-/spl kappa/ dielectric stacks. It is found that high-/spl kappa/ dielectric stacks show different characteristics than what is expected based on the dielectric material polarization model. By the drain current variation measurement in n-channel MOSFET, we confirm that electron trapping and detrapping in the high-/spl kappa/ dielectric stacks is the cause of the dielectric relaxation current. From substrate injection experiments, it is also concluded that the relaxation current is mainly due to the traps located near the SiO/sub 2//high-/spl kappa/ interface. As the electron trapping induces a serious threshold voltage shift problem, a low trap density at the SiO/sub 2//high-/spl kappa/ interface is a key requirement for high-/spl kappa/ dielectric stack application and reliability in MOS devices.  相似文献   

9.
The electrical characteristics of HfO/sub 2/ pMOSFETs prepared by B/sub 2/H/sub 6/ plasma doping and excimer laser annealing were investigated. Various metal gate electrodes were evaluated to protect the high-/spl kappa/ oxide during laser irradiation. Although the aluminum gate electrode showed superior reflectivity to the laser, the equivalent oxide thickness was increased due to the interaction between aluminum and HfO/sub 2/, which resulted in reduced capacitance. In contrast, the Al-TaN stacked gate showed good reflectivity up to laser energy of 500 mJ/cm/sup 2/ and improved capacitance was obtained compared with the Al gate. For the first time, the electrical characteristics of a HfO/sub 2/ pMOSFET with an Al-TaN gate fabricated by plasma doping and excimer laser annealing were demonstrated. It was also demonstrated that plasma doping and excimer laser annealing combined with a metal gate could be applied for high-/spl kappa/ oxide MOSFET fabrication.  相似文献   

10.
We have studied ultrathin Al/sub 2/O/sub 3/ and HfO/sub 2/ gate dielectrics on Ge grown by ultrahigh vacuum-reactive atomic-beam deposition and ultraviolet ozone oxidation. Al/sub 2/O/sub 3/-Ge gate stack had a t/sub eq//spl sim/23 /spl Aring/, and three orders of magnitude lower leakage current compared to SiO/sub 2/. HfO/sub 2/-Ge allowed even greater scaling, achieving t/sub eq//spl sim/11 /spl Aring/ and six orders of magnitude lower leakage current compared to SiO/sub 2/. We have carried out a detailed study of cleaning conditions for the Ge wafer, dielectric deposition condition, and anneal conditions and their effect on the electrical properties of metal-gated dielectric-Ge capacitors. We show that surface nitridation is important in reducing hysteresis, interfacial layer formation and leakage current. However, surface nitridation also introduces positive trapped charges and/or dipoles at the interface, resulting in significant flatband voltage shifts, which are mitigated by post-deposition anneals.  相似文献   

11.
The impacts of O/sub 3/ or NH/sub 3/ interface treatments on the long-term V/sub th/ instability in nMOSFET HfO/sub 2/ high-/spl kappa/ gate stacks with TiN metal gate electrodes are compared. The NH/sub 3/ interface treatment is found to be beneficial to suppress the V/sub th/ shift compared to the O/sub 3/-treated samples. This is explained by an enhanced valence band electrons injection in O/sub 3/-treated samples and is experimentally confirmed through a carrier separation measurement. The dynamic stress measurement also indicates that trapped charges are more easily detrapped in NH/sub 3/-treated samples than O/sub 3/-treated samples, improving significantly the V/sub th/ stability.  相似文献   

12.
This paper describes an extensive experimental study of TiN/HfO/sub 2//SiGe and TiN/HfO/sub 2//Si cap/SiGe gate stacked-transistors. Through a careful analysis of the interface quality (interface states and roughness), we demonstrate that an ultrathin silicon cap is mandatory to obtain high hole mobility enhancement. Based on quantum mechanical simulations and capacitance-voltage characterization, we show that this silicon cap is not contributing any silicon parasitic channel conduction and degrades by only 1 /spl Aring/ the electrical oxide thickness in inversion. Due to this interface optimization, Si/sub 0.72/Ge/sub 0.28/ pMOSFETs exhibit a 58% higher mobility at high effective field (1 MV/cm) than the universal SiO/sub 2//Si reference and a 90% higher mobility than the HfO/sub 2//Si reference. This represents one of the best hole mobility results at 1 MV/cm ever reported with a high-/spl kappa//metal gate stack. We thus validate a possible solution to drastically improve the hole mobility in Si MOSFETs with high-/spl kappa/ gate dielectrics.  相似文献   

13.
High-performance low-temperature poly-Si thin-film transistors (TFTs) using high-/spl kappa/ (HfO/sub 2/) gate dielectric is demonstrated for the first time. Because of the high gate capacitance density and thin equivalent-oxide thickness contributed by the high-/spl kappa/ gate dielectric, excellent device performance can be achieved including high driving current, low subthreshold swing, low threshold voltage, and high ON/OFF current ratio. It should be noted that the ON-state current of high-/spl kappa/ gate-dielectric TFTs is almost five times higher than that of SiO/sub 2/ gate-dielectric TFTs. Moreover, superior threshold-voltage (V/sub th/) rolloff property is also demonstrated. All of these results suggest that high-/spl kappa/ gate dielectric is a good choice for high-performance TFTs.  相似文献   

14.
Low-frequency noise characteristics are reported for TaSiN-gated n-channel MOSFETs with atomic-layer deposited HfO/sub 2/ on thermal SiO/sub 2/ with stress-relieved preoxide (SRPO) pretreatment. For comparison, control devices were also included with chemical SiO/sub 2/ resulting from standard Radio Corporation of America clean process. The normalized noise spectral density values for these devices are found to be lower when compared to reference poly Si gate stack with similar HfO/sub 2/ dielectric. Consequently, a lower oxide trap density of /spl sim/4/spl times/10/sup 17/ cm/sup -3/eV/sup -1/ is extracted compared to over 3/spl times/10/sup 18/ cm/sup -3/eV/sup -1/ values reported for poly Si devices indicating an improvement in the high-/spl kappa/ and interfacial layer quality. In fact, this represents the lowest trap density values reported to date on HfO/sub 2/ MOSFETs. The peak electron mobility measured on the SRPO devices is over 330 cm/sup 2//V/spl middot/s, much higher than those for equivalent poly Si or metal gate stacks. In addition, the devices with SRPO SiO/sub 2/ are found to exhibit at least /spl sim/10% higher effective mobility than RCA devices, notwithstanding the differences in the high-/spl kappa/ and interfacial layer thicknesses. The lower Coulomb scattering coefficient obtained from the noise data for the SRPO devices imply that channel carriers are better screened due to the presence of SRPO SiO/sub 2/, which, in part, contributes to the mobility improvement.  相似文献   

15.
A novel high-/spl kappa/ silicon-oxide-nitride-oxide-silicon (SONOS)-type memory using TaN/Al/sub 2/O/sub 3//Ta/sub 2/O/sub 5//HfO/sub 2//Si (MATHS) structure is reported for the first time. Such MATHS devices can keep the advantages of our previously reported TaN/HfO/sub 2//Ta/sub 2/O/sub 5//HfO/sub 2//Si device structure to obtain a better tradeoff between long retention and fast programming as compared to traditional SONOS devices. While at the same time by replacing hafnium oxide (HfO/sub 2/) with aluminum oxide (Al/sub 2/O/sub 3/) for the top blocking layer, better blocking efficiency can be achieved due to Al/sub 2/O/sub 3/'s much larger barrier height, resulting in greatly improved memory window and faster programming. The fabricated devices exhibit a fast program and erase speed, excellent ten-year retention and superior endurance up to 10/sup 5/ stress cycles at a tunnel oxide of only 9.5 /spl Aring/ equivalent oxide thickness.  相似文献   

16.
MOS devices built on various germanium substrates, with chemical vapor deposited (CVD) or physical vapor deposited (PVD) HfO/sub 2/ high-/spl kappa/ dielectric and TaN gate electrode, were fabricated. The electrical properties of these devices, including the capacitance equivalent thickness (CET), gate leakage current density (J/sub g/), slow trap density (D/sub st/), breakdown voltage (V/sub bd/), capacitance-voltage (C-V) frequency dispersion, and thermal stability, are investigated. The process conditions such as surface nitridation treatment, O/sub 2/ introduction in CVD process and postdeposition anneal temperature in PVD process, exhibit significant impacts on the devices' electrical properties. The devices built on germanium substrates with different dopant types and doping concentrations show remarkable variations in electrical characteristics, revealing the role of the substrate doping in the reactions occurring at the dielectric/Ge interface, which can significantly affect the interfacial layer formation and Ge updiffusion. A possible mechanism is suggested that two competing processes (oxide growth and desorption) take place at the interface, which govern the formation of the interfacial layer. Doped p-type (Ga) and n-type (Sb) impurities may enhance the different process at the interface and cause the variations in the interfacial layer formation and so on in electrical properties. The high diffusivities of impurities and Ge atoms in Ge and the induced structural defects near the substrate surface could be one possible cause for this doping effect. As another behavior of the substrate doping effect, Ge n-MOS and p-MOS stacks show quite different C-V characteristics after high temperature postmetallization anneal treatments, which can be explained by the same mechanism.  相似文献   

17.
High-/spl kappa/ Al/sub 2/O/sub 3//Ge-on-insulator (GOI) n- and p-MOSFETs with fully silicided NiSi and germanided NiGe dual gates were fabricated. At 1.7-nm equivalent-oxide-thickness (EOT), the Al/sub 2/O/sub 3/-GOI with metal-like NiSi and NiGe gates has comparable gate leakage current with Al/sub 2/O/sub 3/-Si MOSFETs. Additionally, Al/sub 2/O/sub 3/-GOI C-MOSFETs with fully NiSi and NiGe gates show 1.94 and 1.98 times higher electron and hole mobility, respectively, than Al/sub 2/O/sub 3/-Si devices, because the electron and hole effective masses of Ge are lower than those of Si. The process with maximum 500/spl deg/C rapid thermal annealing (RTA) is ideal for integrating metallic gates with high-/spl kappa/ to minimize interfacial reactions and crystallization of the high-/spl kappa/ material, and oxygen penetration in high-/spl kappa/ MOSFETs.  相似文献   

18.
Deuterium was incorporated into the HfAlOx /SiON gate dielectric by the use of heavy water (D/sub 2/O) instead of H/sub 2/O in the atomic layer deposition (ALD) process of HfAlOx. The HfAlOx formed by D/sub 2/O-ALD acts as a deuterium reservoir, and the deuterium atoms are effectively incorporated into the SiON after full CMOS processing. It is clarified that the deuterium incorporation suppresses interfacial trap generation and interfacial SiON breakdown, while charge-trapping in the HfAlOx bulk traps is barely affected. The D/sub 2/O-ALD process is useful for improving the interfacial layer reliability under gate negative stress; therefore it is not only effective for HfAlOx, but also for high-/spl kappa//SiO/sub 2/(SiON) gate stacks with other high-/spl kappa/ materials such as HfO/sub 2/ or HfSiON.  相似文献   

19.
In this letter, a prototype of conductive atomic force microscope with enhanced electrical performance has been used to separately investigate the effect of the electrical stress on the SiO/sub 2/ and the HfO/sub 2/ layers of a high-/spl kappa/ gate stack. Charge trapping in HfO/sub 2/ native defects and degradation of both layers have been observed, depending on the stress level.  相似文献   

20.
The ultrathin HfO/sub 2/ gate dielectric (EOT<0.7 nm) has been achieved by using a novel "oxygen-scavenging effect" technique without incorporation of nitrogen or other "dopants" such as Al, Ti, or La. Interfacial oxidation growth was suppressed by Hf scavenging layer on HfO/sub 2/ gate dielectric with appropriate annealing, leading to thinner EOT. As the scavenging layer thickness increases, EOT becomes thinner. This scavenging technique produced a EOT of 7.1 /spl Aring/, the thinnest EOT value reported to date for "undoped" HfO/sub 2/ with acceptable leakage current, while EOT of 12.5 /spl Aring/ was obtained for the control HfO/sub 2/ film with the same physical thickness after 450/spl deg/C anneal for 30 min at forming gas ambient. This reduced EOT is attributed to "scavenging effect" that Hf metal layer consumes oxygen during anneal and suppresses interfacial reaction effectively, making thinner interface layer. Using this fabrication approach, EOT of /spl sim/ 0.9 nm after conventional self-aligned MOSFETs process was successfully obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号