首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper,subnanosecond-pulse and one-nanosecond-pulse generators are used to study the breakdowns in highly overvolted gaps in atmospheric pressure air.With different cathodes,we measured the applied voltage and discharge current to investigate the dynamic characteristics in the subnanosecond breakdown during the generation of a supershort avalanche electron beam.Especially,characteristics of dynamic displacement current are presented in the current paper,which is detected between the ionization wave front and a plane anode.It is shown that during a subnanosecond voltage rise time,the amplitude of the dynamic displacement current can be higher than 4 kA.It is demonstrated that the breakdown in the air gap is assisted by ionization processes between the ionization wave front and a plane anode.  相似文献   

2.
Diffuse and spark discharges are formed and studied during breakdowns with nonuniform electric field in nitrogen,air,and argon at elevated pressures and pulse repetition frequency of 400 Hz.Negative-polarity voltage pulses of the amplitude 20 kV,width at the base of 15 ns and rise time of 2 ns are applied to the electrode with a small radius of curvature.In the conditions of generation of runaway electron beams and X-rays,a CCD camera records the time of the diffuse discharge formation and its duration prior to its transition to a spark one.In all three gases,the diffuse discharge is formed during the time not exceeding 1 ns,when the bright spots appear on cathode in argon and air resulting in the beginning of the spark channel propagation.  相似文献   

3.
Many applications of gas discharge with runaway electrons(DRE) require high-voltage pulse generators(HVPG) with very high increasing rate of output voltage(up to 100 kV/ns),long operation life and low cost.Such HVPGs have to be controlled by external computer for working in combination with other modern equipment.In this paper,some HVPGs development for DRE application in industry and medicine are described.The functional structure and operation principles are discussed for the HVPG of "PROTEUS’ line.It is shown that on different loads,the "PROTEUS" generators can produce high-voltage nanosecond pulse with energy up to 1 J,output voltage amplitude from zero to 150 kV,and pulse repetition frequency from zero to 2 000 Hz.Four models of the "PROTEUS" generators are described.The output voltage leading front duration is 150 ns for the "PROTEUS-I" model,10~20 ns for the "PROTEUS-II",2 ns for the "PROTEUS-III" and 0.5 ns for the "PROTEUS-IV".DRE parameters obtained by using "PROTEUS" HVPGs are demonstrated.Some results of DRE application in solid-state surface modification of natural textile and polymer films are shown as well.  相似文献   

4.
杜伯学  王立 《高电压技术》2013,(8):1852-1857
The diagnosis of water trees of cable insulation is of great importance as the water-treeing is a primary cause of aging breakdown for the middle voltage cables. In this paper, it is described how the water-tree-aged 10 kV XLPE cables were diagnosed. The cables were subjected to electrical stress of 5.9 kV/mm and a thermal load cycle in a curved water-filled tube for 3, 6 and 12 months of aging in accor- dance with the accelerated water-tree test method. The aged cables were used as the samples for water-tree diagnosis. First, the water-tree degraded cable, was charged by a DC voltage, and then the cable was grounded while a pulse voltage was applied to it for releasing the space charge trapped in the water trees. The amount of the space charge, which corresponds to the deterioration degree of the water trees, was calculated. The effects of DC voltage amplitude, pulse voltage repetition rate and aging conditions on the amount of the space charge were studied. Obtained results show that the amount of the space charge has a positive correlation with the applied DC voltage and the ag- ing time of the cables, and that a peak value of space charge appears with the increase of the pulse voltage repetition rate. An optimum pulse voltage repetition rate under which the space charge can be released rapidly is obtained. Furthermore, the releasing mechanism of space charge by the pulse voltage is discussed. Accumulated results show that the presented method has a high resolution for the diagnosis of water tree degradation degree and is expected to be applied in practice in future.  相似文献   

5.
Suwarno 《高电压技术》2011,(11):2655-2663
Partial discharge(PD) is one of the most important phenomenon in high voltage insulations.In most cases, the appearance of partial discharges is related to insulation defects.Understanding partial discharges is important for diagnosis on insulation condition.Corona discharges appear when extremely high electric field appears on the conductor surface exceeding the electric field strength of the gas.The high electric field may occur at around protrusion with very sharp tip.This paper reported a holistic approach of corona discharge investigation.The needle-plane electrode system was used.The medium between the electrodes was air.The needle was made from steel with radius of curvature of 3μm(Ogura needle).Sinusoidal as well as triangular applied voltages were used.The waveform of the corona discharges was measured using a digital oscilloscope.The corona discharge pulses were measured using a phase-resolved PD measurement system.The system was able to measure the magnitude(q) and phase angle position(φ) of each PD pulses,as well as the number of discharge pulses(n).The role of applied voltage was investigated using phase-resolved analysis of corona discharge pulses through pulse sequence,pulse magnitude and pulse number analysis. Experimental results indicated that corona discharge current waveform was an impulse with rise time of about several ns and the impulse width of about 100 ns.The Fast Fourier Transform analysis indicated that the corona discharge current waveform had several spectrum peaks at frequency of 7.8 MHz,85.9 MHz,109.4 MHz and 195.3 MHz.The experimental results also showed that discharge pulses were concentrated around the peak of applied voltage for both sinusoidal and triangular voltages.The discharge magnitude,as well as its probability of occurrence,was strongly dependent on the instantaneous applied voltage.The shape ofφ-n,as well asφ-q-n PD patterns,were strongly reflected by the shape of applied voltage.In order to get deep understanding of the corona discharge,by utilizing results of the phase-resolved analysis,electrical equivalent circuits of corona discharges were proposed.The electrical equivalent circuit contained capacitances and a spark gap.For deeply understanding of PD phenomenon,computer simulation was done by using the proposed electrical equivalent circuits.The similarity of the measured and simulated PD patterns was assessed by comparing measured and simulated theφ-q-n andφ-n PD patterns.The results indicated that simulated PD patterns similar to those obtained from experiment.  相似文献   

6.
It is difficult to detect and extinguish direct current(DC)arc in power electronics systems,and the arc could easily lead to a fire and cause great damage to surrounding equipment.A DC arc generation simulation unit is established,in which DC series arcs are generated by dragging the moving electrode away from the fixed one with the help of the stepper motor.In addition,a ferrite rod antenna is used to receive the electromagnetic radiation signals induced by the arcs.Based on experiments using the unit,the general characteristics of DC arc,including the pulse characteristics of arc current and source output in corresponding time window,and the frequency-domain characteristics of arc current,are studied.With discussion on three detection methods,it is concluded that the variation of current and voltage of arc,the spectrum of the arc current during the discontinuous intervals and the radiating electromagnetic signal are all features that can be adopted for detecting DC series arc.Therefore,a synthetic judgment method is suggested for further study.  相似文献   

7.
Breakdown of atmospheric pressure air gaps with combined design of the cathode at the voltage pulse rise rate equal to 1014V/s has been studied with picoseconds’temporal resolution.Cathode assembly has a structure consisting of a flat thin foil and a grid of parallel foil thin wires.In the space behind the cathode foil a fast electron flow was recorded.The current value of the fast electron beam recorded behind the cathode is essentially influenced by the anode material.At a grid cathode and flat anode,the spectra of fast electrons generated both in direct(towards the anode)and reverse directions have been reconstructed by the attenuation curves.  相似文献   

8.
This paper is concerning switching impulse air gap insulation characteristics of rod-to-plane and V-string 6-conductor bundle to tower body in ±800 kV transmission lines.The tests were performed in China Southern Power Grid Co.,Ltd.(CSG) Kunming outdoor UHV laboratory at an altitude of 2 100 m.The switching impulse strength performance were obtained at a rod-to-plane arrangement and a full-scale model of 6-conductor bundle to tower.The test gap length of the typical rod-to-plane arrangement is 1.5~10 m and 5.3~8.2 m for the conductor-tower model,and the range of test voltage is about 450~3 100 kV.The critical positive switching impulse strength of conductor-tower gap is 1 525 kV in the gap length of 6.2 m.Additionally,the influence of the wave front time(100~1 700 μs) on the 50% flashover voltage is discussed.According to the test data,the minimum air gap clearances of the conductor-tower model with V-insulators at the altitude of 2 100 m should be longer than 6.8 m(wave front time 250 μs) and 5.8 m(wave front time 1 000 μs),respectively.The results are useful to air gap insulation design in UHVDC systems with rated voltage of ±800 kV.  相似文献   

9.
Investigations are reported into the use of an electromagnetically convoluted arc,external to a magnetic field(B-field)producing coil,in combination with a parallel R,L,C resonant circuit for interrupting quasi-steady currents.In order to elucidate the complex interactions between the arc,B-field and R,L,C circuit,the B-field producing coil is energised independently from the current to be interrupted and the R,L,C circuit.Experimental results are presented for the time variation of the currents flowing through the arc gap,the B-field coil and the parallel R,L,C circuit,along with the voltage across the arc gap.An insight is gained into the role of various effects,which are produced by the complex interactions and which might be used to advantage for direct current interruption.  相似文献   

10.
Dielectric barrier discharge(DBD) attracts lots of attentions for its great application promises,and the rotational temperature is one of its mostly important parameters.In order to measure the rotational temperature of a pulsed DBD in atmospheric air,the temperature is studied by using optical emission spectroscopy(OES).The discharge is excited by a high voltage pulse with 124 ns rise time and 230 ns full width at half maximum(FWHM) at a repetition rate of a few hundred hertz.The rotational temperatures are studied using different voltages,different repetition rates of the pulse power supply,and different gaps between dielectrics: They are in the range from 390 K to 500 K during the whole discharge.When the gap between dielectrics increases,the rotational temperature initially decreases and then increases.The rotational temperature changes complexly when the pulse repetition rate changes.When the voltage increases,the rotational temperature always decreases,which is not expected.These results allow one to predict the rotational temperature at different supply power parameters and electrode configurations,which is useful for the DBD’s industrial application.  相似文献   

11.
A compact high-voltage repetitive nanosecond pulse generator(HRNPG)was developed for studying the technology of repetitive nanosecond pulse technology and its related application.The HRNPG mainly consists of a repetitive charging module,a Tesla transformer and a sharpening switch.With its voltage lower than 1 kV,the primary repetitive charging circuit comprises two fast thyristors as its low-voltage switches.The spiral Tesla transformer acts as the main step-up component,and its peak transformation ratio is designed to be more than 100.A self-breakdown spark switch,i.e.the sharpening switch,is used to sharpen the output of the transformer and to generate nanosecond pulses.The HRNPG prototype is capable of generating pulses of 100 kV in peak with rise time 30 ns and the maximum repetition rate of 500 Hz on a 6 k load.Experimental results show,without any magnetic core,the developed Tesla transformer prototype can easily output high voltage while keeping itself small in size and light in weight,which is of significance for the compactness and portability of the pulse generator.The N2-insulated spark switch operated well at voltage close to 100 kV and the repetition rate within several hundreds of hertz.  相似文献   

12.
An experimental device is used to study the characteristics of dielectric barrier discharge(DBD)plasma excited by high voltage sub-microsecond pulse power in atmospheric air.Glass,polytetrafluoroethene(PTFE)and plexiglass are used as dielectric barrier materials.Comparatively homogeneous discharge is obtained within 130 mm diameter area in atmospheric air using the three dielectric materials with gap distances of 4.5 mm,6.5 mm and 6.5 mm,respectively.There is no filamentary discharge observed by naked eyes or by camera with the exposure time of 0.25 s.Gas gap voltage,discharge current,discharge power density,etc.are calculated by using Liu’s equivalent circuit model for pulsed DBD.These parameters are used to study the DBD characteristics.Typically,current varies from tens of amperes to hundreds of amperes in atmospheric air DBD excited by sub-microsecond pulses.The peak power can reach to MW order of magnitude.The average power surface density of 1.0 W/cm2and the average electron density of 1011cm 3can also be obtained in the discharge.Rotational and vibrational temperatures,approximately 400 K and 2 650 K,respectively,are obtained by using the emission spectrum of the discharge.This is the basic work performed for a better understanding of the characteristics of atmospheric air DBD plasma excited by high voltage sub-microsecond pulsed power source.  相似文献   

13.
Distribution transformers operating in modern system grids or in industrial networks are subjected to many switching transients,which may occur due to routine operations,network reconfigurations or as reaction on protection signals.Depending on the network configuration and parameters,such events may lead to external overvoltages and result in additional stresses on the insulation system.This paper presents the influence of a series choke on damping of switching transients in distribution transformers.The impact of the choke is assessed by both amplitude and rise time reduction.The suppression of the transient rise time is shown for a test configuration involving distribution transformers connected to low loss cable lines and a medium voltage breaker.Such phenomena are especially typical for industrial networks where switching operations are very frequent.Both simulation and experiment results are given.Simulation results as well as measurement results confirmed that switching events can lead to high dU/dt and in consequence,can have adverse impacts on insulation system.Voltage escalation during switching event is strongly related with system conditions.The results obtained for presented mitigation method are promising and indicate significant dU/dt reduction as well as number of ignitions and voltage peak value.The protection of distribution transformers with a series choke is a new approach dedicated to environments prone to the occurrence of transients with high steepness.Experimental results show that the application of serial choke with suitable parameters realizes the reduction of dU/dt at the machines terminal from 24 kV/μs to 5 kV/μs,as well as the reduction of voltage peak value from 10 kV to 5 kV.The number of ignitions is also reduced.  相似文献   

14.
The influence mechanism of a small amount of SF6 on ozone generation in oxygen or air discharge is investigated.Some results are obtained by probing into the number of the high-energy electrons,which have the sufficiency energy for generating ozone.Introducing a small amount of SF6 into oxygen sharply decreases the number of high-energy electrons,because the electron density decreases sharply while the mean electron energy remains constant due to higher breakdown voltage and lower discharge power,and some high-energy electrons are consumed by the excitation and attachment of SF6.In contrast,when a small amount of SF6 is added into dry air discharge,despite the consumption of the excitation and attachment of SF6,the number of high energy electrons increases sharply,which is attributed to the higher mean electron energy and electron density resulted from higher breakdown voltage and discharge power.When the volume fraction of SF6 increases from 0 to 2.22%,the ozone mass concentration and the ozone yield increase by 45.7% and 29.7%,respectively.Therefore,though the oxygen source should avoid the presence of SF6,adding a small amount of SF6 can improve the ozone mass concentration and the efficiency of ozone generation.  相似文献   

15.
To discuss the modes of dielectric barrier discharge(DBD) between needle-to-plane electrodes in air,DBD is generated and observed on a needle-to-plane device at atmospheric pressure air.Fast images of the DBD are taken by using a charge couple device(CCD) cinema with a macro lens,while the electrical and photo-electricity waveforms of the DBD are recorded.The current waveforms show that under an applied voltage of 3 kV,there are numerous short current pulses in both positive and negative half-periods of discharges.However,under 6 kV,there are still the numerous short current pulses in the positive half-periods,but only one wide current pulse in each negative half-period.This difference is also found in the photoelectric signals.The streamer,corona and glow discharges are observed from the images of the discharges at different applied voltages.The structure of glow discharge in the negative period is exactly the same as that of the low pressure glow discharge.However,in the positive period of discharge there is always a streamer.In the negative period of discharge,while the applied voltage increases,the transition from corona to glow discharge is observed.The progress of a transition between streamer and glow discharge at 6 kV during one period is analyzed.The glow discharge appearance is determined by two factors: the discharge current is limited to a certain extent by the dielectric layer; the charges deposited on the dielectric layer during the last half period enhance the intensity of the electric field.At an insufficient applied voltage,the cathode drop leads to no glow discharge,but Trichel pulses.  相似文献   

16.
Pulsed discharges can generate high power densities and high equivalent electric fields in plasma to emit X-rays,which is closely related to discharge mechanism.In this paper,discharge characteristics and X-ray emission of typical nanosecond-pulse discharges(corona,diffuse,spark or arc)are reviewed.Especially,the diffuse discharges are observed at pulse repetition frequencies up to 1 kHz.Factors influencing the discharge characteristics and X-ray emission are analyzed,such as the gap spacing,parameters of the applied pulse(amplitude,pulse repetition frequency),anode and cathode materials,and curvature radius of cathode.It is concluded that the maximum X-ray intensity is obtained in a diffuse discharge,and the X-ray intensity is affected by the pulse repetition frequency,applied voltage,anode material,and curvature radius of cathode.For example,X-ray intensity increases with the pulse repetition frequency and the atomic numbers of the anode material,but it decrease with the increase of curvature radius.It is also shown that the cathode material has no obvious influence on the X-ray intensity.  相似文献   

17.
《电气》2012,(Z1):32-37
According to performance analysis of a three-phase grid-connected inverter mathematical model of a directly-driven wind turbine with a permanent magnet synchronous generator (D-PMSG) under unbalanced network voltage conditions, a dual current-loop control strategy (DCC) oriented on positive voltage and negative current is proposed to inhibit the DC voltage fluctuation. Meanwhile, a notch filter is introduced into the conventional control strategy of a phase-locked loop to complete the low voltage ride through (LVRT) ability of the wind generator. A 1.5-MW D-PMSG with a back-to-back IGBT frequency converter was simulated in the PSCAD/EMTDC environment, and simulation results showed that: the maximum wind power tracking was achieved in this system and the proposed DCC strategy could successfully inhibit the rising aging of DC voltage and enhance the ride-through capability of D-PMSG wind generation system under unbalanced network voltage conditions.  相似文献   

18.
This work is devoted to experimentally study the characteristics of discharge plasma in high power xenon flashlamps.In the experiments,plasma channel profiles are captured by using a high speed CCD camera,and the radiation energy of the flashlamp is obtained by a pyroelectric energy meter.Voltage and current curves are recorded to shed light on the plasma characteristics.With these diagnostic methods,typical factors influencing the evolution process of plasma channel are studied,including the external electric field and the pre-ionization.The electric potential distribution in the flashlamp influence the plasma channel characteristics the most significantly.The plasma channel pattern for the cases with grounded wires is different from that with ungrounded metal wires.When the wire is ungrounded,it is the coupling voltage between the metal wire and the flashlamp that influences the development of plasma channel.In terms of radiation efficiency,it is proven that there is an optimal interval within 200~300μs between the pre-ionization pulse and the main pulse.  相似文献   

19.
Recent events related to power system failure have shown that voltage collapse can be a cause of widespread outages.The thrust of this paper is to discuss and establish means of mitigating system voltage instability by using a combination of both reactive current droop compensation and line drop compensation.It is shown that the point that the voltage regulator controls can be defined by a new method which is based on a widely accepted voltage stability analysis tool.This tool can be used to determine which generators will have an impact on the maximum permissible loading of a bus.Dynamic analysis was carried out on the CIGRE Nordic test system to study the impact of control point location on time to collapse and it is shown that the new scheme can improve the voltage stability.  相似文献   

20.
李庆  王巧艳  刘璞  宫文龙 《高电压技术》2013,(10):2351-2357
To simulate the electro-hydrodynamics of wire-plate corona discharge at different voltages accurately,a simulation method,which relates the definite radius and initial velocity of a jet source to the amplitude of discharge voltage,is developed.Firstly,a model of the electro-hydrodynamics is established by the Matlab software using the governing equations discretized with the finite difference method.Secondly,the electric field strength and current density are simulated and the radius and initial velocity of a jet source at different voltages are determined.Finally,the discharge electro-hydrodynamics is simulated using the determined boundary conditions.Compared with using a conventional method,using the proposed method can obtain a wind velocity with smaller errors from the experimental and theoretical wind velocities: the errors between simulated wind velocity and its theoretical counter part at 45 kV and 50 kV decrease from 9% and 6.25% to 1.7% and 1.56%,respectively.Thus,the proposed method is feasible for the existing discharge models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号