首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An optically addressed structure of the As x Se1-x -liquid crystal (LC) type, with the photoconductor composition deviating from stoichiometry toward excess arsenic, has been tested using holographic techniques. It is established that the As50Se50-LC structure (with maximum possible arsenic content in the photoconductor) exhibits record high sensitivity (2.2 × 10?7 W/cm2) at a He-Ne laser radiation wavelength. Based on this structure, it is possible to implement nonlinear optical data-processing algorithms employing the entire transmission characteristic including the inversion region. The maximum diffraction efficiency achieved with the As50Se50-LC structure amounts to 36.5%.  相似文献   

2.
As2Se3.4glass samples with controlled oxygen content in the range (1.4–7.9) × 10–2wt % were used to assess the effect of oxygen impurity on the IR absorption spectrum of the glass. The spectral dependence of the extinction coefficient for oxygen impurity was determined in the range 600–1400 cm–1. It was shown that the presence of 10–5wt % O gives rise to additional losses comparable to the intrinsic losses in the CO2lasing range.  相似文献   

3.
Phase transitions and thermal deformations of - and -Cs2(UO2)2(MoO4)3 were studied by high-temperature X-ray diffraction analysis. In heating of -Cs2(UO2)2(MoO4)3 to 625 ± 25°C, the reconstructive phase transition proceeds. -Cs2(UO2)2(MoO4)3 is stable up to 700 ±25°C. The thermal expansion of both phases is sharply anisotropic: 11 = 10 × 10–6, 22 = 33 × 10–6, 33 = 10 × 10–6, V = 53 × 10–6 deg–1 for -Cs(UO2)2(MoO4)3 and 11 = 13 × 10–6, 33 = 3 × 10–6, V = 31 × 10–6 deg–1 for -Cs2 (UO2)2 (MoO4)3. The anisotropy of thermal expansion is explained by features of the crystal structure of the compounds.Translated from Radiokhimiya, Vol. 46, No. 5, 2004, pp. 405–407.Original Russian Text Copyright © 2004 by Nazarchuk, Krivovichev, Filatov.  相似文献   

4.
The photocurrent and optical transmission spectra of thin (As2S3)0.3(As2Se3)0.7 glass films doped with Sn and Pb are reported. The strongest photoresponse is offered by the films doped with 0.010– 0.015 at % Sn or Pb. Low doping levels are shown to have a significant effect on the peak-response wavelength and band gap of the films.  相似文献   

5.
The optical absorption, photoconductivity, and short-circuit photocurrent spectra of structurally perfect Cd1 - x ZnxAs2 (x = 0.03, 0.05, 0.06) single crystals are studied for the first time near the intrinsic edge in the range 80–300 K. The results demonstrate that the intrinsic edge in the solid solutions is due to indirect transitions involving the formation of excitons for both the E c and E c polarizations. The indirect gaps g i of the solid solutions are determined. In the range 80–300 K, the data for x = 0–0.06 and both polarizations are well fitted by g i (x) = g i (0) + 0.0866x + 2.35x 2. The introduction of 6 mol % ZnAs2 into CdAs2 increases its g i by 14 meV.Translated from Neorganicheskie Materialy, Vol. 41, No. 3, 2005, pp. 268–272.Original Russian Text Copyright © 2005 by Morozova, Marenkin, Mikhailov, Koshelev.This revised version was published online in April 2005 with a corrected cover date.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

6.
The spectroscopic study of Nd3+ in Sr6NdSc(BO3)6 crystal had been performed. Based on the Judd-Ofelt theory to analyze the optical strengths measured in absorption spectra, the following spectral parameters were obtained: intensity parameters are 2 = 1.108 × 10–20 cm2, 4 = 2.884 × 10–20 cm2, 6 = 3.085 × 10–20 cm2, the radiative lifetime is 385 s, the quantum efficiency is 12.5%. The fluorescence branch ratios were calculated: 1 = 0.423, 2 = 0.482, 3 = 0.092, 4 = 0.005.  相似文献   

7.
The spectral parameters of Er3+ in Yb3+/Er3+:KY(WO4)2 crystal with space group C2/c have been investigated based on Judd-Ofelt theory. The spectral parameters were obtained: the intensity parameters are: 2 = 6.33 × 10–20 cm2, 4 = 1.35 × 10–20 cm2, 6 = 1.90 × 10–20 cm2. The radiative lifetime and the fluorescence branch ratios were calculated. The emission cross section e (at 1536 nm) is 2.0 × 10–21 cm2.  相似文献   

8.
The results of differential scanning calorimetric (DSC) measurements on Ge20Se80- xAsx (x = 0, 5, 10, 15 and 20) system with the specific aim of investigating the effect of heating rate and composition on glass transition temperature have been discussed. The results indicate that the glass transition temperature (Tg) is dependent both on the heating rate and composition. The glass transition activation energy (Et) and heat absorbed in glass transition region (ΔH) are higher for Ge20Se65As15 as compared to the values of other compositions of arsenic. An effort has also been made to develop an empirical model for the composition dependence of ΔH. A good agreement has been observed between the experimental values and the results of model calculation.  相似文献   

9.
The structure of three compounds in the Cu2Se-In2Se3-Cr2Se3 system near CuInCr2Se5 is determined by single-crystal x-ray diffraction: CuInCr4Se8 (I), Cu2In2Se4 (II), and Cu0.5In0.5Se (III). I has a cubic (spinel type) structure: a = 10.606(4) Å, Z = 4, sp. gr. F43m. II has a pseudotetragonal (sphalerite type) structure: a = 5.774(2) Å, c = 11.617(6) Å. The structure of II was solved in a reduced unit cell with a = 5.774(2) Å, b = 5.774(2) Å, c = 7.095(6) Å, = 113.95(5)°, = 113.95(5)°, = 90.00(4)°, Z = 1, sp. gr. P1. III has a triclinic cell (disordered structure of II): a = 4.088(1) Å, b = 4.091(2) Å, c = 4.101(1) Å, = 60.05(1)°, = 60.08(1)°, = 89.98(4)°, Z = 1, sp. gr. P1. The Cu and In atoms in I sit in inequivalent tetrahedral sites, and the Cr atoms reside in octahedral interstices of the close packing of Se atoms. The bond lengths are In–Se = 2.538(6), Cr(1)–Se(1) = 2.514(7), Cr(1)–Se(2) = 2.576(8), and Cu–Se = 2.437(5) Å. In II, all of the atoms sit in tetrahedral sites; the mean bond lengths are In–Se = 2.578(6) and Cu–Se = 2.44(1) Å. In III, the Cu and In atoms are fully disordered in the same tetrahedral site; the mean Cu(In)–Se bond length is 2.508(6) Å.Translated from Neorganicheskie Materialy, Vol. 40, No. 12, 2004, pp. 1435–1439.Original Russian Text Copyright © 2004 by Antsyshkina, Sadikov, Koneshova, Sergienko.  相似文献   

10.
We have studied the 77-K photoluminescent properties of As2S3 semiconducting glass prepared at different temperatures (T 1 = 870 K; T 2 = 1120 K; T 3 = 1370 K) and cooling rates (v 1 = 10?2 K/s, v 2 = 1.5 K/s, v 3 = 1.5 × 102 K/s). The results demonstrate that the structural, optical, and photoluminescent properties of semiconducting chalcogenide glasses can be tuned over a considerable range by varying the preparation conditions.  相似文献   

11.
The heat capacity of Ga2Se3 is measured from 14 to 320 K by adiabatic calorimetry. The smoothed heat capacity data are used to evaluate temperature-dependent thermodynamic functions (entropy, enthalpy increment, and reduced Gibbs energy) of gallium selenide. Under standard conditions, the thermodynamic properties of Ga2Se3 are C p 0 (298.15 K) = 120.8 ± 0.2 J/(K mol), S0(298.15 K) = 180.4 ± 0.4 J/(K mol), H0(298.15 K) - H0(0) = 25.32 ± 0.05 kJ/mol, and Φ0(298.15 K) = 95.52 ± 0.19 J/(K mol). The Debye characteristic temperature of Ga2Se3 evaluated from heat capacity data is 340 ± 10 K.  相似文献   

12.
In order to investigate the photo-induced thermal property changes in chalcogenide thin films, amorphous As 2 S 3 thin film samples, whose thicknesses are 0.5, 1.0, 2.0, and 4.0 m, were prepared on silicon wafers by thermal evaporation. Their thermal conductivity was measured by the 3 method between room temperature and 100 °C. These measurements were repeated after the illumination of an Ar+ laser beam whose photon energy is consistent with the bandgap energy of As 2 S 3, and repeated again for annealed films at 180 °C for 1 h. The result shows that the thermal conductivities of fresh films were 0.14 to 0.27 W·m –1·K –1; however, the values increase to 0.28–0.47 W·m –1·K –1 after illumination of the sample and decrease to 0.19–0.42 W·m –1·K –1 after annealing of the sample. These changes can be explained by the change in microstructure produced from the photo-darkening and thermal annealing.  相似文献   

13.
During the fabrication process of transparent conducting thin films of ATO (antimony-doped tin oxide) on a soda lime glass substrate by a sol-gel dip coating method, the effects of the SiO2 buffer layer formed on the substrate and N2 annealing treatment were investigated quantitatively. The deposited ATO thin film was identified as a crystalline SnO2 phase and the film thickness was about 100 nm/layer at a withdrawal speed of 50 mm/min. Optical transmittance and electrical resistivity of the 400 nm-thick ATO thin film that was deposited on SiO2 buffer layer/soda lime glass and then annealed under nitrogen atmosphere were 84% and 5.0 × 10–3cm, respectively. The XPS analysis confirmed that a SiO2 buffer layer inhibited Na ion diffusion from the substrate, preventing the formation of a secondary phase such as Na2SnO3 and SnO and increasing Sb ion concentration and ratio of Sb5+/Sb3+ in the film. It was found that N2 annealing treatment leads to the reduction of Sn4+ as well as Sb5+, however the reduction of Sn4+ is more effective, and consequently results in a decrease in the electrical resistivity to produce excellent electrical properties in the film. © Springer Science + Business Media, Inc.  相似文献   

14.
Nanocrystalline Lu2O3-TiO2 (33.3–44 mol % Lu2O3) materials with a partially disordered pyrochlore structure, prepared via heat treatment in the range 1400–1750°C, are found to possess high oxygen ionic conductivity. Their 740°C conductivity is 10-3 to 10-2 S/cm, depending on the heat-treatment temperature and composition, which is comparable to that of the well-known fluorite solid electrolyte ZrO2-9 mol % Y2O3.Translated from Neorganicheskie Materialy, Vol. 41, No. 3, 2005, pp. 324–331.Original Russian Text Copyright © 2005 by Shlyakhtina, Mosunov, Stefanovich, Knotko, Karyagina, Shcherbakova.This revised version was published online in April 2005 with a corrected cover date.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

15.
The current (electrical transport) through In/ZnGa2Se4/In structures has been measured as a function of temperature and applied electric field at temperatures from 77 to 400 K in fields from 10 to 3 × 104 V/cm. The results are analyzed in terms of the Poole-Frenkel effect and space-charge-limited currents. The activation energy of traps and trap concentration in ZnGa2Se4 and its refractive index are determined to be E t= 0.8 eV, N t = 4 × 1013 cm?3, and n = 2.4, respectively.  相似文献   

16.
The high-temperature (>1600°C) order—disorder phase transition of Tm2Ti2O7 is shown to be irreversible. The 740°C ionic conductivity of nanocrystalline Tm2Ti2O7 ceramics synthesized at 1670°C is 2 × 10-3 S/cm and remains unchanged upon heat treatment in air at 860°C for 240 h. The conductivity of the high-temperature (disordered pyrochlore) phase of Tm2Ti2O7 is independent of grain size in the range 20–30 nm.Translated from Neorganicheskie Materialy, Vol. 40, No. 12, 2004, pp. 1495–1500.Original Russian Text Copyright © 2004 by Shlyakhtina, Knotko, Larina, Borichev, Shcherbakova.  相似文献   

17.
The incorporation of phosphoric anhydride into - and -aluminas during mechanical activation is investigated. An empirical equation is proposed for the kinetics of P2O5 incorporation. The effect of the specific power of the mill on the amount of bound P2O5 is analyzed.Translated from Neorganicheskie Materialy, Vol. 41, No. 3, 2005, pp. 321–323.Original Russian Text Copyright © 2005 by Kosenko, Smirnova, Denisova.This revised version was published online in April 2005 with a corrected cover date.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

18.
Fluctuations in the conductivity of Ba0.72K0.28Fe2As2 single crystal are studied systematically by resistance measurements as a function of temperature and magnetic field. A clear Maki?Thompson and Aslamakov?Larkin (MT–AL) two- to three-dimensional (2D–3D) crossover is found on the excess conductivity (Δσ) curves as the temperature approaches the superconducting critical temperature, T c. 3D fluctuations in superconductivity are realized near T c that are well fitted to experimental data by the 3D Aslamazov–Larkin theory. The Maki–Thompson model shows a 2D conductivity fluctuation above the 2D-3D temperature transition, T 0, which depends on magnetic field. Results show that the 2D-3D dimensional crossover moves to lower temperature with increasing magnetic field. The values of the transition temperature and the crossover in the reduced temperature, ln(ε 0), as functions of magnetic field were used to determine the coherence length and the lifetime, τ φ , of the fluctuational pairs at the temperature of 35 K. Analysis of the Ba0.72K0.28Fe2As2 single crystal gives a value of 3.76 × 10??12 s for the τ φ in the absence of magnetic field and it decreases to 2.4 × 10??12 s in magnetic field of 13 T.  相似文献   

19.
We have studied phase equilibria in the pseudoternary system Ag2Se-As2Se3-Bi2Se3 and constructed the 300-, 600-, and 800-K isothermal sections, a number of partial phase diagrams, and the liquidus projection of this system. The AgAsSe2-AgBiSe2 and As2Se3-AgBiSe2 joins are shown to be pseudobinary, and the Ag3AsSe3-AgBiSe2 and AgAs3Se5-AgAsSe2 joins are pseudobinary below the liquidus. Several in- and univariant peritectic, eutectic, and eutectoid equilibria and a broad region of AgBiSe2-based solid solutions are identified. The homogeneity region of the AgBiSe2-based phase has the largest extent along the AgAsSe2-AgBiSe2 join: 40 mol % (650 K) for the high-temperature form of AgBiSe2 and 20 mol % (300 K) for its low-temperature form.  相似文献   

20.
By melting a mixture of high-purity oxides in a platinum crucible under flowing purified oxygen, we have prepared (TeO2)0.75(WO3)0.25 glass with a total content of 3d transition metals (Fe, Ni, Co, Cu, Mn, Cr, and V) within 0.4 ppm by weight, a concentration of scattering centers larger than 300 nm in size below 102 cm−3, and an absorption coefficient for OH groups (λ ∼ 3 μm) of 0.008 cm−1. The absorption loss in the glass has been determined to be 115 dB/km at λ = 1.06 μm, 86 dB/km at λ = 1.56 μm, and 100 dB/km at λ = 1.97 μm. From reported specific absorptions of impurities in fluorozirconate glasses and the impurity composition of the glass studied here, the absorption loss at λ ∼ 2 μm has been estimated at ≤100 dB/km. The glass has been drawn into a glass-polymer fiber, and the optical loss spectrum of the fiber has been measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号