首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
朱蕾蕾  王海龙 《热加工工艺》2012,41(13):185-187,190
采用CuMnCo钎料对YG6C硬质合金与16Mn钢的真空钎焊工艺进行研究。通过三点弯曲试验、光学显微镜观察、扫描电镜及能谱分析等手段研究了真空度、钎焊温度和钎缝间隙对钎焊接头组织和性能的影响。结果表明,钎缝中心区为Cu-Mn基固溶体,两侧界面反应区为Fe-Co基固溶体。真空度、钎焊温度和钎缝间隙对钎焊接头的组织和性能有明显影响。高真空条件下钎焊接头的抗弯强度高于中真空条件下钎焊接头抗弯强度。钎焊温度为1095℃时,钎焊接头的抗弯强度最高。钎焊温度过低时,冶金作用较弱,接头强度较低;钎焊温度过高时,钎料流失较多,接头强度也较低。在高真空以及钎焊温度1095℃、间隙为0.2 mm时,钎焊接头的抗弯强度最高。间隙过小时,钎缝中夹杂物较多,接头强度较低;间隙过大时,Fe、Co原子难以通过长程扩散越过钎缝,冶金作用较弱,接头强度也较低。  相似文献   

2.
随着现代工业的急速发展,常规硬质合金与钢钎焊工具逐渐难以满足复杂极端工作环境的需求,针对此问题,研究了不同钎焊温度(860℃~950℃)对AgCuNiMn钎料真空钎焊YG6X硬质合金与GH4169高温合金钎焊接头微观组织的影响,测试了860℃~950℃焊接温度下试样在常温与理论工作温度227℃下的抗拉强度,并测试了860℃焊接温度下试样的深低温(-238℃)抗拉强度。钎缝微观组织主要由Ag基固溶体与Cu基固溶体组成,随着钎焊温度的升高,钎缝中心区Cu基固溶体的数量逐渐减少,钎缝间隙逐渐变窄,两侧界面处Cu基固溶体反应层逐渐变厚,一定程度上提高了钎料与母材的界面结合强度,但同时也使得钎缝处残余应力增加。钎缝在常温下的抗拉强度呈现先升高后降低的趋势,在890℃~950℃焊接温度区间,227℃的拉伸试验温度对接头抗拉强度基本没有影响,在钎焊温度为890℃时,平均拉伸强度达到最高值为715.3 MPa。在860℃焊接温度下,接头的平均抗拉强度表现为-238℃拉伸强度(474.8 MPa)>常温拉伸强度(430.2 MPa)>227℃拉伸强度(278 MPa),深低温环境下接头的抗拉强度相较于常温下提高了约10%;由于860℃焊接温度相对较低,钎料与母材溶解与扩散程度较低,导致钎料在227℃下发生软化,抗拉强度急剧下降。  相似文献   

3.
采用新型的Cu-Mn-Ni-Si钎料真空钎焊2Cr13不锈钢,研究了钎焊温度和保温时间对接头组织和室温力学性能的影响.结果表明:钎焊接头组织由钎缝中心区Cu-Mn基固溶体和钎缝界面反应区的(Fe,Ni,Mn)- Si化合物组成.随着钎焊温度的增加,钎缝界面处化合物层厚度减小,Cu-Mn基固溶体相应增多,接头室温剪切强度随之增加,在钎焊时间15min、钎焊温度1050℃时达到321 MPa.在钎焊温度1000℃时,接头室温剪切强度随着钎焊保温时间的延长先增加后降低,在钎焊保温时间30min时取得最大值305 MPa.  相似文献   

4.
采用CuMnCo钎料,对YG8硬质合金和0Cr13不锈钢进行真空钎焊工艺研究.铺展试验表明,CuMnCo钎料对两种母材具有良好的润湿性.通过三点弯曲试验、SEM及EDS观察分析,研究了真空钎焊钎焊温度、钎缝间隙对钎缝组织、元素分布及接头力学性能的影响.结果显示:钎焊温度为1070℃,钎缝间隙为0.20mm时得到了具有抗弯强度约为445MPa的最佳钎焊接头,其钎缝中心区组织为均匀的Cu-Mn基固溶体,并在两个界面反应区产生了适量Fe-Co基同溶体.  相似文献   

5.
采用铜箔对C-276镍基耐蚀合金和304不锈钢的真空钎焊工艺进行研究。通过金相显微镜、扫描电镜及能谱分析、显微硬度机和万能材料试验机等手段研究钎焊温度对钎焊接头的微观组织和力学性能的影响。结果表明,钎焊温度对接头的组织和性能有明显影响。钎缝中心区为Cu基固溶体,两侧界面反应区分别为Fe基固溶体和Ni基固溶体。钎焊温度过低时,冶金作用较弱,接头强度较低;钎焊温度过高时,钎料流失较多,接头强度也较低。当钎焊温度为1 125℃时,接头的拉剪强度最高,为105.7 MPa,且接头的断裂方式为韧性断裂。  相似文献   

6.
采用AgCuZn钎料实现了Ti(C,N)基金属陶瓷与45钢的高频感应钎焊连接。研究了钎焊温度对感应钎焊接头强度的影响,在本试验中,当钎焊温度为900℃时得到的接头界面强度达到最大值,其剪切强度和抗弯强度分别达到133.7 MPa和91.2 MPa。利用SEM、EDS、XRD等微观分析手段,研究了钎焊界面的微观结构,感应钎焊接头的反应产物45钢侧主要为Ag基固溶体和Cu0.64Zn0.36金属间化合物;在金属陶瓷侧,主要为Ag基和Cu基固溶体。  相似文献   

7.
采用四号锰基钎料真空钎焊2Cr13不锈钢,研究了钎焊温度对其接头组织和室温及高温剪切强度的影响,并与Ni-Cr-P钎料钎焊不锈钢接头进行了对比.结果表明:四号锰基钎料钎焊接头组织由Mn-Ni基的单相Mn-Ni-Cu-Fe-Cr-Co固溶体组成,接头室温剪切强度随着钎焊温度的升高逐渐增加;Ni-Cr-P钎料钎焊接头组织由Ni-Fe基固溶体和Ni(Cr,Fe)-P化合物组成,接头室温剪切强度低于四号锰基钎料钎焊接头的室温剪切强度.当测试温度超过500℃时,Ni-Cr-P钎料钎焊接头的高温剪切强度降低幅度不大,四号锰基钎料钎焊接头降低明显,但仍高于Ni-Cr-P钎料钎焊接头的高温剪切强度.  相似文献   

8.
本文采用CuMnNiCrSi钎料实现了对Ti(C,N)基金属陶瓷与低碳钢的真空钎焊连接。研究了钎焊温度和保温时间对钎焊接头剪切强度的影响,通过XRD、SEM和EDS对接头的物相、显微组织、元素分布及断口形貌进行分析。研究表明:在钎焊温度为1030℃,保温时间为20 min的工艺条件下,钎焊接头的结合强度达到最大,其剪切强度为301.5 MPa。Ti(C,N)基金属陶瓷/低碳钢焊缝由α-Ti基固溶体和Cr基固溶体构成。在金属陶瓷一侧的界面处形成Cu基固溶体,在钢一侧形成(Cu,Ni)固溶体和(Fe,Ni)固溶体。Ti(C,N)基金属陶瓷/低碳钢接头断裂发生在Cu基钎料处,其断裂方式为韧性断裂。  相似文献   

9.
杨敏旋  马瑞  刘春凤  张杰  孙妍 《焊接学报》2017,38(4):107-110
采用BNi68CrWB钎料粉末对K24和GH648异种高温合金进行钎焊连接,分析了钎焊温度、保温时间、装配间隙等钎焊工艺参数对接头组织和性能的影响规律.结果表明,在钎焊接头可观察到三个特征组织区域:共晶区、等温凝固区和扩散区;钎焊温度过高,接头内部W-Cr-Ni脆性相增多,接头性能下降.保温时间延长可以促进钎料与母材之间元素的扩散,有利于获得均匀的固溶体组织,接头强度提高,但时间过长,性能略有下降.钎焊间隙在0.05~0.15 mm范围,钎焊温度1 150℃,保温时间30 min所得接头性能较高,约600 MPa.  相似文献   

10.
采用预填镍基合金粉的方法,分别采用一种钴基钎料和一种镍基钎料对K465镍基铸造高温合金进行了大间隙钎焊试验。结果表明,这两种钎料均能实现K465合金的大间隙钎焊。钴基钎料钎焊接头微观组织主要包括镍基合金粉颗粒、粉颗粒间Ni-Co基固溶体以及固溶体上分布着的灰色块状相M23(C,B)6和白色块状相M3B2。镍基钎料钎焊接头微观组织包括镍基合金粉颗粒、粉颗粒间Ni-Cr基固溶体以及分布在颗粒上和颗粒间的白色物相M3B2。钴基钎料钎焊接头900℃平均抗拉强度520 MPa,高于镍基钎料钎焊接头的488 MPa,两者均超过了母材强度的50%。  相似文献   

11.
采用TiZrCuNi钎料对Al0.5CoCrFeNi高熵合金进行钎焊连接后对其进行退火处理,研究了800 ℃下不同退火时间对钎焊接头微观组织和力学性能的影响。通过扫描电镜(SEM)、能谱仪(EDS)分析了钎焊接头微观组织及相组成,利用万能试验机测定了热处理前后试样的剪切性能。结果表明,钎焊接头的典型微观组织分为焊缝区、熔合区和热影响区3部分,焊缝区的组织主要为高熵合金相和BCC结构的FeCr基固溶体;随着退火保温时间的延长,钎焊接头焊缝区灰色相中逐步析出细小的黑色相,对接头起到了一定的弥散强化作用,微观组织更为均匀细小,钎焊接头的剪切强度由未经退火处理的554.8 MPa增加到退火12 h后的581.1 MPa。  相似文献   

12.
孙妍  张杰  刘春凤 《焊接学报》2017,38(6):61-64
采用BNi68CrWB钎料粉末对K24和GH648异种高温合金进行钎焊连接,分析了接头典型界面组织,提出了钎焊过程反应机理.结果表明,接头由共晶区、等温凝固区和扩散区组成.共晶区由WB,CrB和镍基固溶体组成,等温凝固区为镍基固溶体,GH648侧扩散区由WB,WxBy,CrxBy,以及沿晶界析出的镍基固溶体和少量的Cr2Ni3相组成,K24侧扩散区与母材差异不明显.钎焊过程由元素富集、母材溶解、等温凝固和共晶凝固四个阶段组成.其中等温凝固阶段是钎焊过程中最关键的阶段,等温凝固不完全时,钎缝中央存在共晶组织,影响接头性能.钎焊温度1 150℃,保温120 min时,等温凝固完全,接头组织均匀,力学性能最优,室温拉剪强度可达323 MPa.  相似文献   

13.
研究了低银Ag-Cu-Zn钎料(ωAg≤20%)的熔化特性、铺展性能、钎料显微组织。以黄铜/304不锈钢作为母材,采用火焰钎焊方法,进行了搭接钎焊试验。结果表明,低银Ag-Cu-Zn钎料显微组织主要由铜基固溶体、银基固溶体、Cu Zn化合物相构成。In的添加降低了Ag-Cu-Zn钎料的固、液相线温度,改善了钎料润湿性能;添加In的低银Ag-Cu-Zn钎料在凝固过程中析出富In的银基固溶体,起到了固溶强化的效果,改善了钎焊接头的显微组织,从而提高了钎缝接头的力学性能。使用17Ag Cu Zn-1In火焰钎焊黄铜/304不锈钢,钎焊接头成形美观、组织致密、无缺陷存在,综合性能与含银量为25%的BAg25Cu Zn Sn银钎料的性能相当,节银效果显著。  相似文献   

14.
AlSiCu_(10-10) flame brazing 6063 aluminum alloy was rearched,and microstructure and mechanical properties of brazed joints were tested in the experiments. The interfacial microstructures and brazing phases of brazed joints were analyzed by scanning electron microscopy( SEM) and X-ray energy dispersive spectroscopy( EDS). The strength of brazed joints was aquired by tensile test. The results show that the AlCu_2 and Mg_2 Si phases were formed in the brazing seam,the former is the brittle phase,the Mg_2 Si phases is considered to be the strengthening phase of the aluminum alloy,which can reduce the brittleness caused by AlCu_2. The average tensile strength of brazed butt joint was 115 MPa,and the average shear strength of brazed joint was 26 MPa. Finally,the fracture form and fracture morphology of the brazed joint were analyzed.  相似文献   

15.
采用Co-Cr-Ni系钎料在不同的钎焊工艺下对DZ40M定向凝固合金进行了真空钎焊试验,通过扫描电镜、波谱/能谱分析仪和X射线衍射仪对钎焊接头进行了微观组织观察和典型物相成分分析,测试了接头的高温持久寿命和高温拉伸强度.结果表明,钎焊接头主要由近缝区、扩散反应区和钎缝中心区组成,近缝区含有较少的化合物,扩散反应区由钴基固溶体、硼化物和碳化物构成,钎缝中心区则由大量的钴基固溶体、白色和灰色硼化物骨架以及少量的深色条块状或骨架状碳化物等构成;在1180℃/30 min钎焊工艺下接头980℃/83 MPa持久寿命最高,平均值达到18 h 10 min,900℃高温拉伸性能均超过母材技术标准规定的305 MPa.  相似文献   

16.
采用新型耐腐蚀性镍基箔带钎料BNi685对316L不锈钢进行真空钎焊,研究了钎焊间隙对钎缝组织及力学性能的影响,对比了新型BNi685钎料钎焊接头与商用BNi2钎料,BNi685膏状钎焊接头的耐腐蚀性. 结果表明,随着钎焊间隙的增加,钎焊接头的抗拉强度逐渐降低,钎缝中心的显微硬度增加. 钎焊间隙为50 μm时,接头平均抗拉强度为244 MPa,钎缝组织主要由Ni2.9Cr0.7Fe0.36,CrNiP,Cr3P,Ni5Cr3Si相组成. 随着钎焊间隙增加,钎缝中心的CrNiP,Cr3,Ni5Cr3Si相增多,Ni2.9Cr0.7Fe0.36相减少. BNi685钎料钎焊接头的耐腐蚀性优于BNi2和BNi685膏状钎料钎焊接头,在EGR冷却器制造领域具有较大的应用潜力.  相似文献   

17.
研究了钎焊温度对Ni-P系钎料铺展件能及其真空钎焊OCr13不锈钢接头力学性能的影响.结果表明,Ni-P系钎料铺展面积随钎焊温度的升高而增大,并且相同温度下不含Cr的Ni-P钎料铺展面积大于Ni-Cr-P的铺展面积;钎焊温度从925℃升高到1000℃过程中,Ni-P、Ni-Cr-P钎料钎焊不锈钢接头的室温剪切强度均增大,并且在相同钎焊工艺下,不含Cr的Ni-P钎料钎焊不锈钢接头室温剪切强度优于Ni-Cr-P钎焊接头强度30~40MPa;Ni-P系钎料钎焊接头高温强度随温度升高而下降,测试温度超过500℃时,相同温度下含Cr的钎料能够提高钎焊接头强度0~30 MPa.  相似文献   

18.
采用BNi2+TiH2复合粉末钎料成功实现C/C复合材料与GH99镍基高温合金的钎焊,对焊后接头界面组织及力学性能进行了分析.结果表明,焊后接头典型界面结构为C/C复合材料/Cr3C2+MC+Ni(s,s)/MC+Ni(s,s)/Ni3Si+Ni(s,s)/Cr3C2+MC+Ni(s,s)/GH99高温合金.钎料中加入TiH2,可促进C/C复合材料母材的溶解,并在钎缝中部形成MC碳化物颗粒.随着TiH2含量的增加,钎缝中部MC形态由细小弥散向大片状转变.当TiH2含量为3%时,接头室温及800,1000℃高温抗剪强度最高,分别可达40,19及10 MPa,接头强度高于BNi2钎料钎焊接头强度,并可有效保证接头高温使用性能.  相似文献   

19.
以B-Ti57CuZrNi-S为钎料,在氩气保护气氛下对TC6/TC11钛合金进行高频感应钎焊工艺实验研究。采用光学显微镜(OM)、扫描电镜(SEM)及能谱分析(EDS)等测试方法,分析气体保护流量、流态以及工艺参数对焊接界面形貌、接头组织及元素分布的影响,并测试接头的抗拉强度。结果表明,钎焊界面主要由富Ti的β-Ti固溶组织和Cu-Ti、Ni-Ti以及(Cu,Ni)Ti/Zr组成的金属间化合物相组成。钎焊接头的抗拉强度随钎焊温度的升高或保温时间的延长,呈现先升高后降低的趋势,接头最高强度可达433MPa。TC6/TC11钛合金高频感应钎焊优化工艺参数带为:焊接温度910℃~930℃,保温时间120~150 s,Ar气保护流量1 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号