首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Munavalli GR  Kumar MS 《Water research》2004,38(13):2973-2988
Previous work has shown that Lagrangian methods are more efficient for modeling the transport of chemicals in a water distribution system. Two such methods, the Lagrangian Time-Driven Method (TDM) and Event-Driven Method (EDM) are compared for varying concentration tolerance and computational water quality time step. A new hybrid method (EDMNET) is developed which improves the accuracy of the Lagrangian methods. All the above methods are incorporated in an existing hydraulic simulation model. The integrated model is run for different network problems under varying conditions. The TDM-generated solutions are affected by both concentration tolerance and water quality time step, whereas EDM solutions are dependent on concentration tolerance. The EDMNET solutions are less sensitive to variations in these parameters. The threshold solutions are determined for all the methods and compared. The hybrid method simulates the nodal concentrations accurately with least maximum segmentation of network and reasonable computational effort as compared to the other Lagrangian methods.  相似文献   

2.
Fisher I  Kastl G  Sathasivan A 《Water research》2011,45(16):4896-4908
Maintaining the chlorine residual is a major disinfection goal for many water distribution systems. A suitable general chlorine bulk-decay model is required for simulation of chlorine profiles in networks to assist disinfection planning/management efficiently. The first-order model is unsuitable due to inaccuracy and inability to represent rechlorination. Three potentially suitable, simple, reactant models were compared. The single-reactant model was found to be unsuitable, as it was inaccurate when restricted to using a single set of invariant parameters. The two-reactant model was more suitable than the variable-rate-coefficient model, although both models were accurate under the same restriction. The two-reactant model was then calibrated against datasets consisting of multiple decay tests for five distinctly different waters. It accurately predicted data reserved for validation over the chlorine concentration range of 0-6 mg/L, using a single set of invariant parameters, and is therefore the simplest, generally suitable model for simulating chlorine profiles in distribution system networks.  相似文献   

3.
Yonkyu Choi 《Water research》2010,44(1):115-122
UV treatment is a cost-effective disinfection process for drinking water, but concerned to have negative effects on water quality in distribution system by changed DOM structure. In the study, the authors evaluated the effects of UV disinfection on the water quality in the distribution system by investigating structure of DOM, concentration of AOC, chlorine demand and DBP formation before and after UV disinfection process. Although UV treatment did not affect concentration of AOC and characteristics of DOM (e.g., DOC, UV254, SUVA254, the ratio of hydrophilic/hydrophobic fractions, and distribution of molecular weight) significantly, the increase of low molecular fraction was observed after UV treatment, in dry season. Chlorine demand and THMFP are also increased with chlorination of UV treated water. This implies that UV irradiation can cleave DOM, but molecular weights of broken DOM are not low enough to be used directly by microorganisms in distribution system. Nonetheless, modification of DOM structure can affect water quality of distribution system as it can increase chlorine demands and DBPs formation by post-chlorination.  相似文献   

4.
The occurrences of trihalomethanes (THMs), haloacetic acids (HAAs) and heterotrophic bacteria were monitored in five small water systems over a nine-month period to investigate the association between HAA degradation and heterotrophic bacteria populations. The sampling sites were chosen to cover the entire distribution network for each system. An inverse association between heterotrophic bacteria and HAA concentrations was found at some locations where chlorine residuals were around or less than 0.3 mg L−1. At other sample locations, where chlorine residuals were higher (over 0.7 mg L−1), no HAA reduction was observed. A high heterotrophic bacteria count accompanied with a low chlorine residual could be used as an indicator for HAA degradation in distribution systems.  相似文献   

5.
Bacteria in drinking water systems can grow in bulk water and as biofilms attached to pipe walls, both causing regrowth problems in the distribution system. While studies have focused on evaluating the factors influencing the bacteria in bulk water and in biofilms separately, there is a need for understanding biofilm characteristics relative to the bulk water phase. The current study evaluated the effects of chlorine and residence time on the presence of culturable bacteria in biofilms relative to that in bulk water. The results showed that when no chlorine residual was present in the system, the median ratio of bulk to total bacteria was 0.81, indicating that 81% of the bacteria were present in bulk water, whereas only 19% were present in the biofilm. As chlorine concentration increased to 0.2, 0.5, and 0.7 mg/L, the median percentage of bacteria present in bulk water decreased to 37, 28, and 31, respectively. On the other hand, as the residence times increased to 8.2, 12, 24, and 48h, the median percentage of bacteria present in bulk water increased to 7, 37, 58, and 88, respectively, in the presence of a 0.2mg/L chlorine residual. The common notion that biofilms dominate the distribution system is not true under all conditions. These findings suggest that bulk water bacteria may dominate in portions of a distribution system that have a low chlorine residual.  相似文献   

6.
Polyvinyl chloride (PVC) and iron pipe materials differentially impacted manganese deposition within a drinking water distribution system that experiences black water problems because it receives soluble manganese from a surface water reservoir that undergoes biogeochemical cycling of manganese. The water quality study was conducted in a section of the distribution system of Tegucigalpa, Honduras and evaluated the influence of iron and PVC pipe materials on the concentrations of soluble and particulate iron and manganese, and determined the composition of scales formed on PVC and iron pipes. As expected, total Fe concentrations were highest in water from iron pipes. Water samples obtained from PVC pipes showed higher total Mn concentrations and more black color than that obtained from iron pipes. Scanning electron microscopy demonstrated that manganese was incorporated into the iron tubercles and thus not readily dislodged from the pipes by water flow. The PVC pipes contained a thin surface scale consisting of white and brown layers of different chemical composition; the brown layer was in contact with the water and contained 6% manganese by weight. Mn composed a greater percentage by weight of the PVC scale than the iron pipe scale; the PVC scale was easily dislodged by flowing water. This research demonstrates that interactions between water and the infrastructure used for its supply affect the quality of the final drinking water.  相似文献   

7.
Fisher I  Kastl G  Sathasivan A 《Water research》2012,46(10):3293-3303
Maintaining a chlorine residual is a major disinfection goal in many water distribution systems. A suitable general model of chlorine decay in the transported bulk water is an essential component for efficiently modelling chlorine concentration in distribution systems. The two-reactant model meets basic suitability criteria, including accurate prediction of chlorine residual over hundreds of hours, commencing with chlorine concentration 0-4 mg/L. This model was augmented with an equation that increases the decay coefficients with temperature according to Arrhenius theory. The augmented model was calibrated against decay-test data sets to obtain a single invariant set of parameters for each water. Model estimates of chlorine residuals over time closely matched decay-test data, over the usual operating ranges of initial chlorine concentration (1-4 mg/L) and temperature (3.5-28 °C). When the augmented model was fitted to partial data sets, it also predicted the data reserved for validation very well, suggesting that this model can accurately predict the combined effect of initial chlorine concentration and temperature on chlorine bulk decay in distribution systems, using a single set of invariant parameters for a given source water.  相似文献   

8.
In this paper, the similarities between a water distribution system (WDS) and a structural truss are discussed. Based on this discussion, the problem of determining the optimal design of a WDS is studied by extending some of the methods used to good effect in structural optimization. Two sensitivity analysis methods for node heads, i.e. virtual-discharge method and pseudo-discharge method, are proposed, and the sensitivity formula for pipe flowrates is derived. An algorithm based on the Sequential Linear Programming (SLP) technique is suggested. Finally, two numerical examples are presented.  相似文献   

9.
Distributed energy resources allow for new business models that have the potential to substantially change today's power system functioning paradigm. In particular, these changes pose challenges for distribution system operators (DSOs) and their regulation alike. This article sheds light on missing aspects in current regulation, recognizing DSOs as regulated monopolies, but also as key players along the supply chain. We provide insights on how regulation should be adjusted so that DSOs are incentivized to facilitate the market entry of welfare-enhancing technologies in a timely fashion, and to manage the distribution system efficiently in the presence of distributed energy resources.  相似文献   

10.
根据历史震害资料,分析了供水管道震害特点,给出了供水管网的震害划分标准和震害预测模型,并应用于实际企业供水网络的震害分析。  相似文献   

11.
A survey of invertebrates in drinking water from treatment works, internal taps and hydrants on mains was carried out by almost all water companies in the Netherlands from September 1993 to August 1995. Aquatic sow bugs (Asellidae, 1-12 mm) and oligochaeta worms (Oligochaeta, 1-100 mm), both known to have caused rare though embarrassing consumer complaints, were found to form 98% of the mean biomass in water flushed from mains. Their numbers in the mains water ranged up to 1500 (mean 37) Asellidae m−3 and up to 9900 (mean 135) Oligochaeta m−3. Smaller crustaceans (0.5-2 mm) dominated the numbers in water from mains. e.g. water fleas (Cladocera and Copepoda up to 14,000 m−3). Common invertebrates in treated water and in tap water were Rotifera (<1 mm) and nematode worms (Nematoda, <2 mm). No Asellidae, large Oligochaeta (>5 mm) or other large invertebrates were found in 1560 samples of 200 l treated water or tap water.Large variations in invertebrate abundance were found within and between distribution systems. Of the variability of mean biomass in mains per system, 55%, 60% and 63% could statistically be explained by differences in the Biofilm Formation Rate, non-particulate organic matter and the permanganate index of the treated water of the treatment works respectively. A similar correlation was found between mean invertebrate biomass and mean sediment volumes in the distribution systems (R2 = 52%).  相似文献   

12.
Various particle transport mechanisms play a role in the build-up of discoloration potential in drinking water distribution networks. In order to enhance our understanding of and ability to predict this build-up, it is essential to recognize and understand their role. Gravitational settling with drag has primarily been considered in this context. However, since flow in water distribution pipes is nearly always in the turbulent regime, turbulent processes should be considered also. In addition to these, single particle effects and forces may affect radial particle transport.In this work, we present an application of a previously published turbulent particle deposition theory to conditions relevant for drinking water distribution systems. We predict quantitatively under which conditions turbophoresis, including the virtual mass effect, the Saffman lift force, and the Magnus force may contribute significantly to sediment transport in radial direction and compare these results to experimental observations. The contribution of turbophoresis is mostly limited to large particles (>50 μm) in transport mains, and not expected to play a major role in distribution mains. The Saffman lift force may enhance this process to some degree. The Magnus force is not expected to play any significant role in drinking water distribution systems.  相似文献   

13.
The distribution of drinking water generates soft deposits and biofilms in the pipelines of distribution systems. Disturbances in water distribution can detach these deposits and biofilms and thus deteriorate the water quality. We studied the effects of simulated pressure shocks on the water quality with online analysers. The study was conducted with copper and composite plastic pipelines in a pilot distribution system. The online data gathered during the study was evaluated with Self-Organising Map (SOM) and Sammon's mapping, which are useful methods in exploring large amounts of multivariate data. The objective was to test the usefulness of these methods in pinpointing the abnormal water quality changes in the online data. The pressure shocks increased temporarily the number of particles, turbidity and electrical conductivity. SOM and Sammon's mapping were able to separate these situations from the normal data and thus make those visible. Therefore these methods make it possible to detect abrupt changes in water quality and thus to react rapidly to any disturbances in the system. These methods are useful in developing alert systems and predictive applications connected to online monitoring.  相似文献   

14.
变流量冷水系统及其控制系统的动态仿真   总被引:4,自引:1,他引:4  
建立了能够模拟离心式冷水机组、冷却塔冷却系统、管路、二级变流量冷水供水系统以及AHU的控制系统和运行特性的动态仿真器。模拟了整个系统在某些变工况条件下的自控和运行状况。  相似文献   

15.
This study focuses on data-driven approaches for burst detection and classifies them into three categories: classification method, prediction-classification method and statistical method. The performance of these methods is discussed. By analysing uncertainty in burst detection, this paper revealed that non-stationary monitoring data and limitations present in these methods challenge the reliability of detection results. Data pre-processing and probabilistic solutions to deal with the uncertainty are summarised. From these findings and discussions, this paper concludes and recommends that: a) data-driven approaches are promising in real-life burst detection and reducing false alarms is an important issue; b) more comprehensive performance evaluation might be necessary, in particular regarding detectable burst size; c) further research on new methods employing multivariate analysis and a new category based on clustering analysis would be beneficial to tackle uncertainty; d) more focus on the use of pressure data might facilitate burst location and reduce investment in burst detection.  相似文献   

16.
VAV空调系统的动态建模及其送风机控制研究   总被引:2,自引:0,他引:2  
陈武  邓仕明  蔡振雄 《暖通空调》2005,35(8):104-109
介绍了VAV空调系统的动态建模过程,建立了压力无关型VAV末端的动态子模型,该模型能真实反映末端由于风阀联接机械迟滞、电动机动作过程、执行器不灵敏区等所引发的动态特性。以具有两个独立控制区域的小型家用VAV空调系统为对象,利用所建立的系统仿真模型,对两种不同的送风机控制方法进行比较研究。认为在小型家用VAV空调系统中,应当采用具有较弱比例控制作用的PI控制方法对送风机进行控制,以保证系统整体控制的稳定性,实现室温控制效果。  相似文献   

17.
在进行管网抗震可靠性评估时,现有方法大多采用相同方式进行管道的渗漏与爆管水力模拟,这会导致管网水力模拟及可靠性评估结果的不准确。考虑到地震时管道破损具有很大的随机性,对城市供水管网抗震可靠性评估的随机模拟方法进行研究。应用蒙特卡洛模拟产生管网震损场景,用泊松随机数与均匀随机数判定管道工作状态,用正态随机数确定管道渗漏系数;利用EPANET软件中喷嘴及管道关闭功能实现管道渗漏及爆管等效模拟,提出将长管道分段并应用"分步迭代"法求解低压管网水力方程,提高震损管网水力模拟精度。以震损场景下节点流量统计平均值与正常时节点流量的比值作为可靠度指标,分别采用所提出算法及GIRAFFE软件对云南某古镇供水管网在VIII、IV烈度时抗震可靠性进行评估,评估结果证明了所提出算法的可行性。评估结果还表明,除地震烈度外,管网本身水力条件对供水可靠性影响较大,管网末端、支管服务区域及地势较高区域供水可靠性远低于干管服务区。  相似文献   

18.
The objective of this paper is to develop a model for simulating the thermal and hydraulic behavior of space heating systems with radiators controlled by thermostat valves (TRVs) in multi-family buildings. This is done by treating the building and the heating system as a complete entity. Sub-models for rooms, radiators, TRVs, and the hydraulic network are derived. Then the suggested sub-models are combined to form an integrated model by considering interactions between them. The proposed model takes into account the heat transfer between neighboring rooms, the transport delay in the radiator, the self-adjusting function of the TRV, and the consumer's regulation behavior, as well as the hydraulic interactions between consumers.  相似文献   

19.
Deterioration in drinking water quality in distribution networks represents a problem in drinking water distribution. These can be an increase in microbial numbers, an elevated concentration of iron or increased turbidity, all of which affect taste, odor and color in the drinking water. We studied if pipe cleaning would improve the drinking water quality in pipelines. Cleaning was arranged by flushing the pipes with compressed air and water. The numbers of bacteria and the concentrations of iron and turbidity in drinking water were highest at 9 p.m., when the water consumption was highest. Soft deposits inside the pipeline were occasionally released to bulk water, increasing the concentrations of iron, bacteria, microbially available organic carbon and phosphorus in drinking water. The cleaning of the pipeline decreased the diurnal variation in drinking water quality. With respect to iron, only short-term positive effects were obtained. However, removing of the nutrient-rich soft deposits did decrease the microbial growth in the distribution system during summer when there were favorable warm temperatures for microbial growth. No Norwalk-like viruses or coliform bacteria were detected in the soft deposits, in contrast to the high numbers of heterotrophic bacteria.  相似文献   

20.
Water quality can deteriorate in the transmission and distribution system beyond the treatment plant. Minimizing the potential for biological regrowth can be attained by chlorinating the finished water. While flowing through pipes, the chlorine concentration decreases for different reasons. Reaction with the pipe material itself and the reaction with both the biofilm and tubercles formed on the pipe wall are known as pipe wall demand, which may vary with pipe parameters. The aim of this paper was to assess the impact of the service age of pipes on the effective chlorine wall decay constant. Three hundred and two pipe sections of different sizes and eight different pipe materials were collected and tested for their chlorine first-order wall decay constants. The results showed that pipe service age was an important factor that must not be ignored in some pipes such as cast iron, steel, cement-lined ductile iron (CLDI), and cement-lined cast iron (CLCI) pipes especially when the bulk decay is not significant relative to the wall decay. For the range of the 55 years of pipe service age used in this study, effective wall decay constants ranged from a decrease by -92% to an increase by +431% from the corresponding values in the recently installed pipes. The effect of service age on the effective wall decay constants was most evident in cast iron pipes, whereas steel pipes were less affected. Effective chlorine wall decay for CLCI and CLDI pipes was less affected by service age as compared to steel and cast iron pipes. Chlorine wall decay constants for PVC, uPVC, and polyethylene pipes were affected negatively by pipe service age and such effect was relatively small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号