首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
This study applies a genetic algorithm embedded with mathematical programming techniques to solve a synchronized and integrated two-level lot sizing and scheduling problem motivated by a real-world problem that arises in soft drink production. The problem considers a production process compounded by raw material preparation/storage and soft drink bottling. The lot sizing and scheduling decisions should be made simultaneously for raw material preparation/storage in tanks and soft drink bottling in several production lines minimizing inventory, shortage and setup costs. The literature provides mixed-integer programming models for this problem, as well as solution methods based on evolutionary algorithms and relax-and-fix approaches. The method applied by this paper uses a new approach which combines a genetic algorithm (GA) with mathematical programming techniques. The GA deals with sequencing decisions for production lots, so that an exact method can solve a simplified linear programming model, responsible for lot sizing decisions. The computational results show that this evolutionary/mathematical programming approach outperforms the literature methods in terms of production costs and run times when applied to a set of real-world problem instances provided by a soft drink company.  相似文献   

2.
This study addresses the production and distribution planning problem in the soft drink industry. The problem involves the allocation of production volumes among the different production lines in the manufacturing plants, and the delivery of products to the distribution centers (DCs). A mixed integer linear programming (MILP) model is developed for the problem.  相似文献   

3.
This study considers a production lot sizing and scheduling problem in the brewery industry. The underlying manufacturing process can be basically divided into two main production stages: preparing the liquids including fermentation and maturation inside the fermentation tanks; and bottling the liquids on the filling lines, making products of different liquids and sizes. This problem differs from other problems in beverage industries due to the relatively long lead times required for the fermentation and maturation processes and because the “ready” liquid can remain in the tanks for some time before being bottled. The main planning challenge is to synchronize the two stages (considering the possibility of a “ready” liquid staying in the tank until bottling), as the production bottlenecks may alternate between these stages during the planning horizon. This study presents a novel mixed integer programming model that represents the problem appropriately and integrates both stages. In order to solve real-world problem instances, MIP-based heuristics are developed, which explore the model structure. The results show that the model is able to comprise the problem requirements and the heuristics produce relatively good-quality solutions.  相似文献   

4.
This article comprises the first theoretical and computational study on mixed integer programming (MIP) models for the connected facility location problem (ConFL). ConFL combines facility location and Steiner trees: given a set of customers, a set of potential facility locations and some inter-connection nodes, ConFL searches for the minimum-cost way of assigning each customer to exactly one open facility, and connecting the open facilities via a Steiner tree. The costs needed for building the Steiner tree, facility opening costs and the assignment costs need to be minimized.  相似文献   

5.
The capacitated multi-level lot sizing problem with backorders has received a great deal of attention in extant literature on operations and optimization. The facility location model and the classical inventory and lot sizing model with (??, S) cuts have been proposed to formulate this problem. However, their comparative effectiveness has not yet been explored and is not known. In this paper, we demonstrate that on linear programming relaxation, the facility location formulation yields tighter lower bounds than classical inventory and lot sizing model. It further shows that the facility location formulation is computationally advantageous for deriving both lower and upper bounds. The results are expected to provide guidelines for choosing an effective formulation during the development of solution procedures. We also propose a Lagrangian relaxation-based heuristic along with computational results that indicate its competitiveness with other heuristics and a prominent commercial solver, Cplex 11.2.  相似文献   

6.
An integrated fault detection, fault isolation, and parameter estimation technique is presented in this paper. Process model parameters are treated as disturbances that dynamically affect the process outputs. A moving horizon estimation technique minimizes the error between process and model measurements over a finite horizon by calculating model parameter values across the estimation horizon. To implement qualitative process knowledge, this minimization is constrained such that only a limited number of different faults (parameters) may change during a specific horizon window. Multiple linear models are used to capture nonlinear process characteristics such as asymmetric response, variable dynamics, and changing gains. Problems of solution multiplicity and computational time are addressed. Results from a nonlinear chemical reactor simulation are presented.  相似文献   

7.
Mathematical formulations for production planning are increasing complexity, in order to improve their realism. In short-term planning, the desirable level of detail is particularly high. Exact solvers fail to generate good quality solutions for those complex models on medium- and large-sized instances within feasible time. Motivated by a real-world case study in the pulp and paper industry, this paper provides an efficient solution method to tackle the short-term production planning and scheduling in an integrated mill. Decisions on the paper machine setup pattern and on the production rate of the pulp digester (which is constrained to a maximum variation) complicate the problem. The approach is built on top of a mixed integer programming (MIP) formulation derived from the multi-stage general lotsizing and scheduling problem. It combines a Variable Neighbourhood Search procedure which manages the setup-related variables, a specific heuristic to determine the digester's production speeds and an exact method to optimize the production and flow movement decisions. Different strategies are explored to speed-up the solution procedure and alternative variants of the algorithm are tested on instances based on real data from the case study. The algorithm is benchmarked against exact procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号