首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metastable crystal structure of strontium- and magnesium-substituted LaGaO3 (LSGM) was studied at room and intermediate temperatures using powder X-ray diffractometry and Rietveld refinement analysis. With increased strontium and magnesium content, phase transitions were found to occur from orthorhombic (space group Pbnm ) to rhombohedral (space group R [Threemacr] c ) at the composition La0.825Sr0.175Ga0.825Mg0.175O2.825 and, eventually, to cubic (space group Pm [Threemacr] m ) at the composition La0.8Sr0.2Ga0.8Mg0.2O2.8. At 500°C in air and at constant strontium and magnesium content, a phase transformation from orthorhombic (space group Pbnm ) to cubic (space group Pm [Threemacr] m ) was observed. For the orthorhombic modification, thermal expansion coefficients were determined to be α a ,ortho = 10.81 × 10−6 K−1, α b ,ortho = 9.77 × 10−6 K−1, and α c ,ortho = 9.83 × 10−6 K−1 (25°–400°C), and for the cubic modification to be αcubic= 13.67 × 10−6 K−1 (500°–1000°C).  相似文献   

2.
LaAlO3-stabilized La2/3TiO3 (LT) ceramics were prepared by the conventional mixed oxide route. Small amounts of manganese oxide were added to eliminate Ti4+ reduction. The powders were calcined at 1150°C and sintered at 1400°–1500°C for 4 h and cooled at rates of 900°–15°C/h. The products were high density and single phase, with an average grain size of 6 μm. The LaAlO3-stabilized LT ceramics exhibited a relative permittivity (ɛr) of 64, a positive temperature coefficient of resonant frequency (τf) of 84, and dielectric Q value × resonant frequency ( Q × f ) values of 16 400 GHz. The crystal structure and microstructures have been investigated using high-resolution transmission electron microscopy (HRTEM) in conjunction with X-ray diffraction (XRD). One candidate crystal structure, a ≈2 a p (where a p is the lattice parameter of the high-temperature form of the cubic perovskite), b ≈2 a p, and c ≈2 a p with a space group Cmmm (65), has been confirmed by XRD, electron diffraction, and lattice imaging techniques. Microtwins, with twin boundaries parallel to the {100} planes, were observed in the microstructures.  相似文献   

3.
The microwave dielectric properties of the (1− x )CaTiO3– x Ca(Zn1/3Nb2/3)O3 ceramic system have been investigated. The ceramic samples sintered at 1300°–1450°C for 4 h in air exhibit orthorhombic pervoskite and form a complete solid solution for different x value. When the x value increased from 0.2 to 0.8, the permittivity ɛr decreased from 115 to 42, the unloaded quality factor Q × f increased from 5030 to 13 030 GHz, and the temperature coefficient τf decreased from 336 to −28 ppm/°C. When x =0.7, the best combination of dielectric properties, a near zero temperature coefficient of resonant frequency of τf∼−6 ppm/°C, Q × f ∼10 860 GHz and ɛr∼51 is obtained.  相似文献   

4.
Tungstenbronze-type Ba4(Nd0.7Sm0.3)9.33Ti18O54 (BNST) microwave dielectric ceramics doped with 0–10 wt% silver (Ag) particles were successfully fabricated by a citrate sol–gel method. The influence of Ag doping on the sinterability, microstructure, bulk conductivity, and dielectric properties of BNST was investigated. The desired tungstenbronze-type phase was obtained at 900°–950°C. The sintering temperature of BNST decreased to 1100°C with the aid of a small amount of Ag addition (1 wt%). No chemical reaction between the tungsenbronze phase and Ag was detected. The particle size of the powders decreased with increasing Ag content up to 1 wt% and it then increased with a further increase in the Ag content. The dense fine-grained ceramics with submicrometer grains (∼300 nm) were obtained with 1 wt% Ag addition. The submicrometer-grained ceramics had excellent dielectric properties of ɛr∼81 and Q × f ∼11 000 GHz. Both the dielectric constant and dielectric loss significantly increased with large additions (>3 wt%) of Ag due to the percolation effect.  相似文献   

5.
The microwave dielectric properties of CaTi1− x (Al1/2Nb1/2) x O3 solid solutions (0.3 ≤ x ≤ 0.7) have been investigated. The sintered samples had perovskite structures similar to CaTiO3. The substitution of Ti4+ by Al3+/Nb5+ improved the quality factor Q of the sintered specimens. A small addition of Li3NbO4 (about 1 wt%) was found to be very effective for lowering sintering temperature of ceramics from 1450–1500° to 1300°C. The composition with x = 0.5 sintered at 1300°C for 5 h revealed excellent dielectric properties, namely, a dielectric constant (ɛr) of 48, a Q × f value of 32 100 GHz, and a temperature coefficient of the resonant frequency (τf) of −2 ppm/K. Li3NbO4 as a sintering additive had no harmful influence on τf of ceramics.  相似文献   

6.
Crystal structures and structural changes of the compound La0.68(Ti0.95Al0.05)O3 have been studied using neutron powder diffraction data and the Rietveld method in the temperature range from 25° to 592°C. The Rietveld profile-fitting analyses of the neutron data and the synchrotron diffraction profile revealed that the crystal symmetry of the low-temperature phase of La0.68(Ti0.95Al0.05)O3 is orthorhombic Cmmm (2 a p× 2 a p× 2 a p; p: pseudo-cubic perovskite). The unit-cell and structural parameters were successfully refined with the orthorhombic Cmmm for the intensity data measured at 25°, 182°, and 286°C, and with the tetragonal P 4/ mmm ( a p× a p× 2 a p) for intensity data obtained at 388° and 592°C. The P 4/ mmm -to- Cmmm phase transition was found to be induced by tilting of the (TiAl)O6 octahedron. The tilt angle decreased with increasing temperature, reaching 0° at the Cmmm – P 4/ mmm transition temperature.  相似文献   

7.
The crystal structure and dielectric properties of LaYbO3 ceramics prepared by the mixed-oxide route have been investigated. Rietveld refinements performed on X-ray and neutron diffraction data show the room-temperature structure to be best described by the orthorhombic Pnma space group [ a =6.02628(9) Å, b =8.39857(11) Å, and c =5.82717(7) Å; Z =4, and theoretical density, D x =8.1 g/cm3] in agreement with electron diffraction experiments. LaYbO3 ceramics fired at 1600°C for 4 h attain ∼97% of D x and their microstructures consist of randomly distributed equiaxed grains with an average size of ∼8 μm. Conventional transmission electron microscopy shows densification to occur in the absence of a liquid phase and reveals domain-free grains. The relative permittivity, ɛr, of LaYbO3 ceramics at radio frequencies is ∼26 in the range ∼10–300 K; however, a small dielectric anomaly is detected at ∼15 K. At room temperature and microwave frequencies, LaYbO3 ceramics exhibit ɛr∼26, Q × f r∼20 613 GHz (at 7 GHz), and τf∼−22 ppm/K. Q × f r show complex subambient behavior, decreasing from a plateau value of ∼20 000 GHz between ∼300 and 200 K to a second plateau value of ∼6000 GHz at ∼90 K before decreasing to <1000 GHz at ∼10 K. The large decrease in Q × f r at low temperature may be related to the onset of antiferromagnetism at ∼2.7 K. 1  相似文献   

8.
Ultrafine La(Ca)CrO3 (LCC) powder was prepared through the glycine–nitrate gel combustion process. It was shown for the first time that the use of relatively inexpensive CrO3 as a starting material for chromium has potential for the bulk preparation of sinter-active LCC powder. As-prepared powder, when calcined at 700°C, resulted in LCC along with a small amount of CaCrO4. The calcined powder was found to be composed of soft agglomerates with a particle size of ≈70–290 nm. The cold pressing and sintering of the calcined powder at 1200°C resulted in the mono-phasic La0.7Ca0.3CrO3 with density ≈98% of its theoretical value. This is the lowest sintering temperature ever reported for La0.7Ca0.3CrO3. The conductivity of the sintered La0.7Ca0.3CrO3 at 1000°C was found to be ≈57 S/cm in air. The sintering and electrical behavior achieved for La0.7Ca0.3CrO3 may find application as an interconnect material for high-temperature solid oxide fuel cells if problems with chemical expansion and poor conductivity in fuel can be overcome.  相似文献   

9.
CaRAlO4 (R = Nd, Sm, Y) ceramics with a K2NiF4 structure were prepared by a solid-state reaction approach, and their microwave dielectric characteristics were evaluated, along with their microstructures. Dense CaNdAlO4, CaSmAlO4, and CaYAlO4 ceramics were obtained by sintering at 1425°–1500°C in air for 3 h, and good microwave dielectric characteristics were achieved: (1) ɛ= 18.2, Qf = 17 980 GHz, τf=−52 ppm/°C for CaNdAlO4; (2) ɛ= 18.2, Qf = 51 060 GHz, τf=−3 ppm/°C for CaSmAlO4; and (3) ɛ= 18.9, Qf = 39 960 GHz, τf= 6 ppm/°C for CaYAlO4.  相似文献   

10.
Composite ceramics in a solid solution of (Mg1− x Mn x )2TiO4 ( x =0.02–0.1) have been prepared by the mixed oxide route. Formation of the solid solution was confirmed by the X-ray diffraction, the EDX analysis, and the measured lattice parameters, which varied linearly from Mg2TiO4 ( a = b = c =8.4410 Å) to (Mg0.9 Mn0.1)2TiO4 ( a = b = c =8.4445 Å). The XRD analysis also confirmed the co-existence of a cubic-structured (Mg1− x Mn x )2TiO4 and an ilmenite-structured second phase (Mg1− x Mn x )TiO3. The composition expected to have a maximum Q × f (276 200 GHz at 10.5 GHz) is (Mg0.95Mn0.05)2TiO4 with ɛr∼15.69 and τf∼−52.6 ppm/°C. The existence of the second phase, however, would lead to no significant variation in the dielectric properties of the specimen because it possesses compatible properties compared with that of the main phase.  相似文献   

11.
The liquid phase sintering of fine BiNbO4 powders allows to obtain dense ceramics with excellent microwave dielectric properties (ɛ=44–46; Q × f =16,500–21,600 GHz) at T ≥700°C. The thermal decomposition of freeze-dried precursors results in the crystallization of a metastable β'-BiNbO4 polymorph that transforms into a stable orthorhombic α-modification at T ≥700°C. The dependence of sinterability on the powder synthesis temperature shows the maximum at 600°C, corresponding to the formation of crystalline BiNbO4 powders with a grain size 80–100 nm. Sintering temperature reduction to 700°C prevents the deterioration of silver contacts during co-firing with BiNbO4 ceramics. In situ scanning electron microscopy observation of the morphological evolution during sintering shows that the intense shrinkage soon after the appearance of a CuO–V2O5 eutectics-based liquid phase is accompanied by complete transformation of the ensemble of primary BiNbO4 particles.  相似文献   

12.
Pb(Mg1/3Ta2/3)0.7Ti0.3O3 thin films of single perovskite phase were successfully synthesized by using the RF sputtering deposition technique, followed by post-thermal annealing. While the perovskite structure of Pb(Mg1/3Ta2/3)0.7Ti0.3O3 is rather unstable, phase evolution in the thin films was manipulated by controlling both working pressure during the sputtering process and post-thermal annealing temperature. The desirable perovskite phase was promoted by increasing the working pressure in the range of 10–25 mTorr, followed by thermal annealing at 600°C. The ferroelectric, dielectric, and polarization behaviors of Pb(Mg1/3Ta2/3)0.7Ti0.3O3 films were characterized over a wide range of frequencies. They are strongly affected by the film thickness, where the relative permittivity and remanent polarization increase, while the coercive field decreases with increasing film thickness in the range of 115–360 nm.  相似文献   

13.
A high dielectric constant and low-loss ceramic with composition Sr4LaTiNb3O15 has been prepared by the conventional solid-state ceramic route. This compound adopts an A5B4O15 cation-deficient hexagonal perovskite structure and crystallizes in the trigonal system with unit cell parameters a =5.6307(2), c =11.3692(3) Å, V =312.16(2) Å3, and Z =1. The dielectric properties of dense ceramics sintered in air at 1460°C have been characterized at microwave frequencies. The results show that the material affords a relatively high dielectric constant ɛr∼43, a high quality factor Q × f ∼44 718 GHz, and a low temperature coefficient of resonant frequency TCf∼13 ppm/°C.  相似文献   

14.
The columbites MgNb2O6, MgTa2O6, and corundum-type Mg4Nb2O9 ceramics were prepared by the conventional solid-state ceramic route. The structure and microstructure of the sintered samples were investigated by X-ray diffraction and scanning electron microscopic techniques. The microwave dielectric properties of the samples were measured by the resonance method in the frequency range 4–6 GHz. The dielectric properties have been tailored by forming a solid solution between MgNb2O6 and MgTa2O6 and by the substitution of TiO2 for Nb2O5 in both MgNb2O6 and Mg4Nb2O9 ceramics. The Mg(Nb0.7Ta1.3)O6 has ɛr=29, Q u× f =67 800 GHz, and τf=0.8 ppm/°C and the MgO–(0.4)Nb2O5–(1.5)TiO2 composition has ɛr=34.5, Q u× f =81 300 GHz, and τf=−2 ppm/°C.  相似文献   

15.
Phase stability, sinterability, and microwave dielectric properties of Bi2W2O9 ceramics and their cofireability with Ag, Cu, and Au electrodes have been investigated. Single-phase Bi2W2O9 powder was synthesized by solid-state reaction in air at 800°C for 3 days. X-ray powder diffraction data show Bi2W2O9 to have an orthorhombic crystal structure described by the noncentrosymmetric space group Pna 21, with lattice parameters a =5.4401(8), b =5.4191(8), c =23.713(4) Å. Ceramics fired at temperatures up to 865°C remain single-phase but above this temperature ferroelectric Bi2WO6 appears as a secondary phase. The measured relative permittivity of Bi2W2O9 ceramics increases continuously from 28.6 to 40.7 for compacts fired between 860° and 885°C. The bulk relative permittivity of Bi2W2O9 corrected for porosity was calculated as 41.3. Bi2W2O9 ceramics fired up to 875°C exhibit moderate quality factors, Q × f r, ∼7500–7700 GHz and negative temperature coefficient of resonant frequency, ∼−54 to −63 ppm/°C. Chemical compatibility experiments show Bi2W2O9 ceramics to react with both Ag and Cu electrodes, but to form good contacts with Au electrodes.  相似文献   

16.
The sintering behavior, ordering state, and microwave dielectric properties of Ba1− x La2 x /3(Zn0.3Co0.7)1/3Nb2/3O3 Ceramics (0≤ x ≤0.06) were investigated in this paper. The X-ray diffraction (XRD) results show that all samples exhibit a single perovskite phase except for the sample with x ≥0.03. The sinterability is slightly improved by La doping. The long range order (LRO) degree on B-site is greatly increased with the increase of x value up to x =0.015 and then slightly decreased with the further increase of x due to the increasing amount of second phases. The dielectric constant at microwave frequency decreases slightly with the increase of x when x <0.015 and increases slightly with further increasing x for the samples sintered at 1375°C/10 h. The Q × f value increases with x up to x =0.015 and then decreases with further increase of x , which is consistent with the variation trend of LRO degree. The τf value decreases slightly with the increase of x up to 0.006, then increases greatly with the further increase of x . An optimized dielectric properties of ɛ r =34, Q × f =63 159, GHz and τf=5.21 ppm/°C were obtained for the x =0.01 sample sintered at 1425°C/10 h.  相似文献   

17.
Phase relations in the system Bi2O3-WO3 were studied from 500° to 1100°C. Four intermediate phases, 7Bi2O3· WO3, 7Bi2O3· 2WO3, Bi2O3· WO3, and Bi2O3· 2WO3, were found. The 7B2O · WO3 phase is tetragonal with a 0= 5.52 Å and c 0= 17.39 Å and transforms to the fcc structure at 784°C; 7Bi2O3· 2WO3 has the fcc structure and forms an extensive range of solid solutions in the system. Both Bi2O3· WO3 and Bi2O3· 2WO3 are orthorhombic with (in Å) a 0= 5.45, b 0=5.46, c 0= 16.42 and a 0= 5.42, b 0= 5.41, c 0= 23.7, respectively. Two eutectic points and one peritectic exist in the system at, respectively, 905°± 3°C and 64 mol% WO3, 907°± 3°C and 70 mol% WO3, and 965°± 5°C and 10 mol% WO3.  相似文献   

18.
A barium titanate precursor with a barium:titanium ratio of 1:4 was prepared by controlled coprecipitation of mixed barium and titanium species with an ammonium oxalate aqueous solution at pH 7. The results of thermal analysis and IR measurement show that the obtained precursor is a mixture of BaC2O4·0.5H2O and TiO(OH)2·1.5H2O in a molar ratio of 1:4. Crystallized BaTi4O9 was obtained by the thermal decomposition of a precipitate precursor at 1300°C for 2 h in air. The dimensions of the powder calcined at 1000°C are between 100 and 300 nm. The grain dimensions of the sintered sample for 2 h at 1300°C are of the order of 10 to 30 μm. Dielectric properties of disk-shaped sintered specimens in the microwave frequency region were measured using the TE011 mode. Excellent microwave characteristics for BaTi4O9—ɛ= 38 ± 0.5, Q = 3800–4000 at 6–7 GHz and τ f = 11 ± 0.7 ppm/°C—were found.  相似文献   

19.
Phase-pure perovskite Pb(Zn x Mg1– x )1/3Nb2/3O3 solid solution (PZ x M1– x N) is obtained for x ≦ 0.7 by heating a milled stoichiometric mixture of PbO, Mg(OH)2, Nb2O5, and 2ZnCO3·3Zn(OH)2·H2O at 1100°C for 1 h. Percent perovskite ( f P) with respect to total crystalline phase decreases with increasing temperature of subsequent heating then increases to 900°C for the mixtures where x ≦ 0.8 and milled for 3 h. For mixtures with x = 0.9 and x = 1, f P decreases monotonically. Curie temperature increases almost linearly with increasing x up to x = 0.7. The maximum dielectric constant at 1 kHz is 2×104 and 1.7×104 for the mixture with x = 0.4 and x = 0.7, respectively. The stabilization mechanism of strained perovskite is discussed.  相似文献   

20.
The system KF–AlF3 was reinvestigated precisely by differential thermal analysis, X-ray diffractometry, and visual observation. All of the samples for the present investigation were prepared by solution synthesis. The results verified the existence of 2KF·AlF3 (K2AlF5) and KF·4AlF3 in the phase diagram; both compounds were orthorhombic. The cell parameters of the compounds were, respectively, a = 10.87 ± 0.03 Å, b = 10.36 ± 0.01 Å, c = 7.83 ± 0.03 Å, and a = 7.89 ± 0.01 Å, b = 7.57 ± 0.01 Å, c = 6.94 ± 0.01 Å. KAlF4 was confirmed to melt congruently at 575°± 2°C by careful examination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号