首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
2.
Emerging evidence indicates important protective roles being played by autophagy in neurodegenerative disorders through clearance of aggregate-prone or mutant proteins. In the current study, we aimed to identify autophagy inducers from Chinese medicinal herbs as a potential neuroprotective agent that enhances the clearance of mutant huntingtin and α-synuclein in PC-12 cells. Through intensive screening using the green fluorescent protein-light chain 3 (GFP-LC3) autophagy detection platform, we found that the ethanol extracts of Radix Polygalae (Yuan Zhi) were capable of inducing autophagy. Further investigation showed that among three single components derived from Radix Polygalaei.e., polygalacic acid, senegenin and onjisaponin B—onjisaponin B was able to induce autophagy and accelerate both the removal of mutant huntingtin and A53T α-synuclein, which are highly associated with Huntington disease and Parkinson disease, respectively. Our study further demonstrated that onjisaponin B induces autophagy via the AMPK-mTOR signaling pathway. Therefore, findings in the current study provide detailed insights into the protective mechanism of a novel autophagy inducer, which is valuable for further investigation as a new candidate agent for modulating neurodegenerative disorders through the reduction of toxicity and clearance of mutant proteins in the cellular level.  相似文献   

3.
Four new secondary metabolites, 3α-((E)-Dodec-1-enyl)-4β-hydroxy-5β-methyldihydrofuran-2-one (1), linderinol (6), 4′-O-methylkaempferol 3-O-α-l-(4″-E-p-coumaroyl)rhamnoside (11) and kaempferol 3-O-α-l-(4″-Z-p-coumaroyl) rhamnoside (12) with eleven known compounds—3-epilistenolide D1 (2), 3-epilistenolide D2 (3), (3Z,4α,5β)-3-(dodec-11-ynylidene)-4-hydroxy-5-methylbutanolide (4), (3E,4β,5β)-3-(dodec-11-ynylidene)-4-hydroxy-5-methylbutanolide (5), matairesinol (7), syringaresinol (8), (+)-pinoresinol (9), salicifoliol (10), 4″-p-coumaroylafzelin (13), catechin (14) and epicatechin (15)—were first isolated from the aerial part of Lindera akoensis. Their structures were determined by detailed analysis of 1D- and 2D-NMR spectroscopic data. All of the compounds isolated from Lindera akoensis showed that in vitro anti-inflammatory activity decreases the LPS-stimulated production of nitric oxide (NO) in RAW 264.7 cell, with IC50 values of 4.1–413.8 μM.  相似文献   

4.
(1) Background: caspase-12 is activated during cytomegalovirus retinitis, although its role is presently unclear. (2) Methods: caspase-12−/− (KO) or caspase-12+/+ (WT) mice were immunosup eyes were analyzed by plaque assay, TUNEL assay, immunohistochemical staining, western blotting, and real-time PCR. (3) Results: increased retinitis and a more extensive virus spread were detected in the retina of infected eyes of KO mice compared to WT mice at day 14 p.i. Compared to MCMV injected WT eyes, mRNA levels of interferons α, β and γ were significantly reduced in the neural retina of MCMV-infected KO eyes at day 14 p.i. Although similar numbers of MCMV infected cells, similar virus titers and similar numbers of TUNEL-staining cells were detected in injected eyes of both KO and WT mice at days 7 and 10 p.i., significantly lower amounts of cleaved caspase-3 and p53 protein were detected in infected eyes of KO mice at both time points. (4) Conclusions: caspase-12 contributes to caspase-3-dependent and independent retinal bystander cell death during MCMV retinitis and may also play an important role in innate immunity against virus infection of the retina.  相似文献   

5.
6.
The endoplasmic reticulum (ER) is a key organelle responsible for the synthesis, modification, folding and assembly of proteins; calcium storage; and lipid synthesis. When ER homeostatic balance is disrupted by a variety of physiological and pathological factors—such as glucose deficiency, environmental toxins, Ca2+ level changes, etc.—ER stress can be induced. Abnormal ER stress can be involved in many diseases. NOD-like receptor family pyrin domain-containing 3 (NLRP3), an intracellular receptor, can perceive internal and external stimuli. It binds to apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1 to assemble into a protein complex called the NLRP3 inflammasome. Evidence indicates that ER stress and the NLRP3 inflammasome participate in many pathological processes; however, the exact mechanism remains to be understood. In this review, we summarized the role of ER stress and the NLRP3 inflammasome in liver disorders and analyzed the mechanisms, to provide references for future related research.  相似文献   

7.
β-Thalassemia is one of the most common genetically inherited disorders worldwide, and it is characterized by defective β-globin chain synthesis leading to reduced or absent β-globin chains. The excess α-globin chains are the key factor leading to the death of differentiating erythroblasts in a process termed ineffective erythropoiesis, leading to anemia and associated complications in patients. The mechanism of ineffective erythropoiesis in β-thalassemia is complex and not fully understood. Autophagy is primarily known as a cell recycling mechanism in which old or dysfunctional proteins and organelles are digested to allow recycling of constituent elements. In late stage, erythropoiesis autophagy is involved in the removal of mitochondria as part of terminal differentiation. Several studies have shown that autophagy is increased in earlier erythropoiesis in β-thalassemia erythroblasts, as compared to normal erythroblasts. This review summarizes what is known about the role of autophagy in β-thalassemia erythropoiesis and shows that modulation of autophagy and its interplay with apoptosis may provide a new therapeutic route in the treatment of β-thalassemia. Literature was searched and relevant articles were collected from databases, including PubMed, Scopus, Prospero, Clinicaltrials.gov, Google Scholar, and the Google search engine. Search terms included: β-thalassemia, ineffective erythropoiesis, autophagy, novel treatment, and drugs during the initial search. Relevant titles and abstracts were screened to choose relevant articles. Further, selected full-text articles were retrieved, and then, relevant cross-references were scanned to collect further information for the present review.  相似文献   

8.
Pyroptosis is a programmed cell death caused by inflammasomes, which can detect cell cytosolic contamination or disturbance. In pyroptosis, caspase-1 or caspase-11/4/5 is activated, cleaving gasdermin D to separate its N-terminal pore-forming domain (PFD). The oligomerization of PFD forms macropores in the membrane, resulting in swelling and membrane rupture. According to the different mechanisms, pyroptosis can be divided into three types: canonical pathway-mediated pyroptosis, non-canonical pathway-mediated pyroptosis, and caspase-3-induced pyroptosis. Pyroptosis has been reported to play an important role in many tissues and organs, including the liver. Autophagy is a highly conserved process of the eukaryotic cell cycle. It plays an important role in cell survival and maintenance by degrading organelles, proteins and macromolecules in the cytoplasm. Therefore, the dysfunction of this process is involved in a variety of pathological processes. In recent years, autophagy and pyroptosis and their interactions have been proven to play an important role in various physiological and pathological processes, and have gradually attracted more and more attention to become a research hotspot. Therefore, this review summarized the role of autophagy and pyroptosis in liver disorders, and analyzed the related mechanism to provide a basis for future research.  相似文献   

9.
Heat tolerance is a target trait in the selective breeding of the sea urchin Strongylocentrotus intermedius, as it plays an important role in the survival and growth of cultured S. intermedius during summer. We investigated family growth and survival response to two temperature treatments to evaluate the genotype by temperature interaction (GEI) in the family selection of S. intermedius. Sea urchins from 11 families were exposed to two simulated water temperature environments—high temperature (HE) and control temperature (CE)—for 12 months, with each experiment divided into four periods (P1, stress-free period I; P2, stress-full high period; P3, stress-response period; and P4, stress-free period II) based on the temperature changes and the survival. Test diameter (TD), body weight (BW), and survival rate (SR) in HE and CE were measured monthly. Effects of family, temperature, and family-temperature interaction on TD, BW, SR, and specific growth rate (SGR) for BW were examined. In CE, BW differed significantly between families in P2, P3, and P4, while TD differed significantly between families in P3 and P4 (p < 0.05). In HE, family had significant effects on BW in P4, and on TD in P3 and P4, while temperature had significant effects on SR, TD, and BW in P3 and P4 (p < 0.05). GEI effects were not significant for TD or BW; however, family ranking changes revealed the existence of GEI in SR. The GEI results indicate the necessity of applying family selection in CE and HE for SR, but not for TD or BW. These results may provide a guide for aquaculture and selective breeding of S. intermedius under temperature pressure.  相似文献   

10.
A series of novel oxyalkylchalcones substituted with alkyl groups were designed and synthesized, and the antioomycete activity of the series was evaluated in vitro against Saprolegnia strains. All tested O-alkylchalcones were synthesized by means of nucleophilic substitution from the natural compound 2′,4′-dihydroxychalcone (1) and the respective alkyl bromide. The natural chalcone (1) and 10 synthetic oxyalkylchalcones (2–11) were tested against Saprolegnia parasitica and Saprolegnia australis. Among synthetic analogs, 2-hydroxy,4-farnesyloxychalcone (11) showed the most potent activity against Saprolegnia sp., with MIC and MOC values of 125 µg/mL (similar to bronopol at 150 µg/mL) and 175 µg/mL, respectively; however, 2′,4′-dihydroxychalcone (1) was the strongest and most active molecule, with MIC and MOC values of 6.25 µg/mL and 12.5 µg/mL.  相似文献   

11.
12.
Macrophages are abundant immune cells in the tumor microenvironment and are crucial in regulating tumor malignancy. We previously reported that ionizing radiation (IR) increases the production of interleukin (IL)-1β in lipopolysaccharide (LPS)-treated macrophages, contributing to the malignancy of colorectal cancer cells; however, the mechanism remained unclear. Here, we show that IR increases the activity of cysteine-aspartate-specific protease 1 (caspase-1), which is regulated by the inflammasome, and cleaves premature IL-1β to mature IL-1β in RAW264.7 macrophages. Irradiated RAW264.7 cells showed increased expression of NLRC4 inflammasome, which controls the activity of caspase-1 and IL-1β production. Silencing of NLRC4 using RNA interference inhibited the IR-induced increase in IL-1β production. Activation of the inflammasome can be regulated by mitogen-activated protein kinase (MAPK)s in macrophages. In RAW264.7 cells, IR increased the phosphorylation of p38 MAPK but not extracellular signal-regulated kinase and c-Jun N-terminal kinase. Moreover, a selective inhibitor of p38 MAPK inhibited LPS-induced IL-1β production and NLRC4 inflammasome expression in irradiated RAW264.7 macrophages. Our results indicate that IR-induced activation of the p38 MAPK-NLRC4-caspase-1 activation pathway in macrophages increases IL-1β production in response to LPS.  相似文献   

13.
Tumor protein 53-induced nuclear protein-1 (TP53inp1) is expressed by activation via p53 and p73. The purpose of our study was to investigate the role of TP53inp1 in response of fibroblasts to ionizing radiation. γ-Ray radiation dose-dependently induces the expression of TP53inp1 in human immortalized fibroblast (F11hT) cells. Stable silencing of TP53inp1 was done via lentiviral transfection of shRNA in F11hT cells. After irradiation the clonogenic survival of TP53inp1 knockdown (F11hT-shTP) cells was compared to cells transfected with non-targeting (NT) shRNA. Radiation-induced senescence was measured by SA-β-Gal staining and autophagy was detected by Acridine Orange dye and microtubule-associated protein-1 light chain 3 (LC3B) immunostaining. The expression of TP53inp1, GDF-15, and CDKN1A and alterations in radiation induced mitochondrial DNA deletions were evaluated by qPCR. TP53inp1 was required for radiation (IR) induced maximal elevation of CDKN1A and GDF-15 expressions. Mitochondrial DNA deletions were increased and autophagy was deregulated following irradiation in the absence of TP53inp1. Finally, we showed that silencing of TP53inp1 enhances the radiation sensitivity of fibroblast cells. These data suggest functional roles for TP53inp1 in radiation-induced autophagy and survival. Taken together, we suppose that silencing of TP53inp1 leads radiation induced autophagy impairment and induces accumulation of damaged mitochondria in primary human fibroblasts.  相似文献   

14.
Autism spectrum disorder (ASD) identifies a neurodevelopmental disease defined by social impairments and repetitive or stereotyped behaviors. The etiology of ASD remains unclear; it primarily affects the brain, but a link between gastrointestinal (GI) diseases, inflammatory mucosal pathology and this disorder has been suggested. In particular, a central role seems to be played by an imbalance in pro-and anti-inflammatory cytokines, oxidative stress, and apoptosis. Toll-like receptor 4 (TLR4) is a protein of innate immunity responsible for the regulation and maintenance of intestinal homeostasis. Through histochemical and immunohistochemical evaluations we analyzed the intestinal morphology and the immunopositivity of TLR4 and of other pro-inflammatory and apoptotic proteins in BTBR T+Itpr3tf/J mice. Morphological data showed that the mucosal tunica presented longer intestinal villi. The length of the villi and the epithelial surface determine the exchanges of the intestinal mucosa with luminal contents, modifying the microbiota composition. The biochemical and immunohistochemical results indicated a close relationship among the increase of TLR4 and the activation of NF-kB subunits (p65 and p50) and pro-inflammatory and apoptotic proteins, such as cyclooxygenase-2, interleukin-1β, inducible nitric oxide synthase, tumor nuclear factor—alpha, caspase-3, caspase-8. These preliminary results require more in-depth study but they suggest the TLR4 signaling pathway as a possible target for therapeutic approaches to reduce GI disorders in ASD.  相似文献   

15.
Innate immune receptors initiate a host immune response, or inflammatory response, upon detecting pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Among the innate immune receptors, nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) play a pivotal role in detecting cytosolic PAMPs and DAMPs. Some NLRs can form a multiprotein cytosolic complex known as the inflammasome. Inflammasome activation triggers caspase-1–mediated cleavage of the pore-forming protein gasdermin D (GSDMD), which drives a form of inflammatory cell death called pyroptosis. Parallelly, activated caspase-1 cleaves immature cytokines pro–IL-1β and pro–IL-18 into their active forms, which can be released via GSDMD membrane pores. The NLR family apoptosis inhibitory proteins (NAIP)-NLR family caspase-associated recruitment domain-containing protein 4 (NLRC4) inflammasome is important for mounting an immune response against Gram-negative bacteria. NLRC4 is activated through NAIPs sensing type 3 secretion system (T3SS) proteins from Gram-negative bacteria, such as Salmonella Typhimurium. Mutations in NAIPs and NLRC4 are linked to autoinflammatory disorders in humans. In this review, we highlight the role of the NAIP/NLRC4 inflammasome in host defense, autoinflammatory diseases, cancer, and cell death. We also discuss evidence pointing to a role of NLRC4 in PANoptosis, which was recently identified as a unique inflammatory programmed cell death pathway with important physiological relevance in a range of diseases. Improved understanding of the NLRC4 inflammasome and its potential roles in PANoptosis paves the way for identifying new therapeutic strategies to target disease.  相似文献   

16.
Eosinophilic chronic rhinosinusitis (ECRS) is a refractory airway disease accompanied by eosinophilic inflammation, the mechanisms of which are unknown. We recently found that CCL4/MIP-1β—a specific ligand for CCR5 receptors—was implicated in eosinophil recruitment into the inflammatory site and was substantially released from activated eosinophils. Moreover, it was found in nasal polyps from patients with ECRS, primarily in epithelial cells. In the present study, the role of epithelial cell-derived CCL4 in eosinophil activation was investigated. First, CCL4 expression in nasal polyps from patients with ECRS as well as its role of CCL4 in eosinophilic airway inflammation were investigated in an in vivo model. Furthermore, the role of CCL4 in CD69 expression—a marker of activated eosinophils—as well as the signaling pathways involved in CCL4-mediated eosinophil activation were investigated. Notably, CCL4 expression, but not CCL5, CCL11, or CCL26, was found to be significantly increased in nasal polyps from patients with ECRS associated with eosinophil infiltration as well as in BEAS-2B cells co-incubated with eosinophils. In an OVA-induced allergic mouse model, CCL4 increased eosinophil accumulation in the nasal mucosa and the bronchoalveolar lavage (BALF). Moreover, we found that CD69 expression was upregulated in CCL4-stimulated eosinophils; similarly, phosphorylation of several kinases, including platelet-derived growth factor receptor (PDGFR)β, SRC kinase family (Lck, Src, and Yes), and extracellular signal-regulated kinase (ERK), was upregulated. Further, CCR5, PDGFRβ, and/or Src kinase inhibition partially restored CCL4-induced CD69 upregulation. Thus, CCL4, which is derived from airway epithelial cells, plays a role in the accumulation and activation of eosinophils at inflammatory sites. These findings may provide a novel therapeutic target for eosinophilic airway inflammation, such as ECRS.  相似文献   

17.
The casein kinase 1 enzymes (CK1) form a family of serine/threonine kinases with seven CK1 isoforms identified in humans. The most important substrates of CK1 kinases are proteins that act in the regulatory nodes essential for tumorigenesis of hematological malignancies. Among those, the most important are the functions of CK1s in the regulation of Wnt pathways, cell proliferation, apoptosis and autophagy. In this review we summarize the recent developments in the understanding of biology and therapeutic potential of the inhibition of CK1 isoforms in the pathogenesis of chronic lymphocytic leukemia (CLL), other non-Hodgkin lymphomas (NHL), myelodysplastic syndrome (MDS), acute myeloid leukemia (AML) and multiple myeloma (MM). CK1δ/ε inhibitors block CLL development in preclinical models via inhibition of WNT-5A/ROR1-driven non-canonical Wnt pathway. While no selective CK1 inhibitors have reached clinical stage to date, one dual PI3Kδ and CK1ε inhibitor, umbralisib, is currently in clinical trials for CLL and NHL patients. In MDS, AML and MM, inhibition of CK1α, acting via activation of p53 pathway, showed promising preclinical activities and the first CK1α inhibitor has now entered the clinical trials.  相似文献   

18.
Five new polyoxygenated cembranoids, named (+)-1,15-epoxy-2-methoxy-12-methoxycarbonyl-11E-sarcophytoxide (1), (+)-2-epi-12-methoxycarbonyl-11E-sarcophine (2), 3,4-epoxyehrenberoxide A (3), ehrenbergol D (4) and ehrenbergol E (5), were obtained from the soft coral Sarcophyton ehrenbergi. The structures of 1–5 were established on the basis of comprehensive NMR and HR-ESI-MS analyses and by comparison with reported data in the literature. Compounds 4 and 5 showed moderate cytotoxicity against P-388 (mouse lymphocytic leukemia) cancer cell line with EC50 values of 2.0 and 3.0 μM, respectively. Compound 2 exhibited slight antiviral activity against HCMV (human cytomegalovirus) with IC50 values of 25.0 μg/mL.  相似文献   

19.
20.
Interferon-β (IFN-β) is a pleiotropic cytokine used for therapy of multiple sclerosis, which is also effective in suppression of viral and bacterial infections and cancer. Recently, we reported a highly specific interaction between IFN-β and S100P lowering IFN-β cytotoxicity to cancer cells (Int J Biol Macromol. 2020; 143: 633–639). S100P is a member of large family of multifunctional Ca2+-binding proteins with cytokine-like activities. To probe selectivity of IFN-β—S100 interaction with respect to S100 proteins, we used surface plasmon resonance spectroscopy, chemical crosslinking, and crystal violet assay. Among the thirteen S100 proteins studied S100A1, S100A4, and S100A6 proteins exhibit strictly Ca2+-dependent binding to IFN-β with equilibrium dissociation constants, Kd, of 0.04–1.5 µM for their Ca2+-bound homodimeric forms. Calcium depletion abolishes the S100—IFN-β interactions. Monomerization of S100A1/A4/A6 decreases Kd values down to 0.11–1.0 nM. Interferon-α is unable of binding to the S100 proteins studied. S100A1/A4 proteins inhibit IFN-β-induced suppression of MCF-7 cells viability. The revealed direct influence of specific S100 proteins on IFN-β activity uncovers a novel regulatory role of particular S100 proteins, and opens up novel approaches to enhancement of therapeutic efficacy of IFN-β.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号