首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objectives were to determine the effects of an injectable formulation of calcitriol on Ca concentration, risk of clinical diseases, and performance in dairy cows. Cows were blocked by lactation number (1 vs. >1) and calving sequence and, within block, assigned randomly within 6 h of calving to receive subcutaneously vehicle only (CON, n = 450) or 200 (CAL200, n = 450) or 300 μg of 1α,25-dihydroxyvitamin D3 (CAL300, n = 450). Cows were fed the same acidogenic diet prepartum. Blood was sampled before treatment administration and again during the first 11 d postpartum and analyzed for concentrations of ionized Ca (iCa), total Ca (tCa), Mg (tMg), and P (tP), β-hydroxybutyrate, carboxylated osteocalcin (cOC), and undercarboxylated osteocalcin (uOC). Cows were evaluated for diseases in the first 60 d postpartum. Reproduction and survival were monitored for the first 300 d postpartum. Calcitriol increased concentration of blood iCa (CON = 1.12 vs. CAL200 = 1.23 vs. CAL300 = 1.27 mM), plasma tCa (CON = 2.29 vs. CAL200 = 2.44 vs. CAL300 = 2.46 mM), and plasma tP (CON = 1.72 vs. CAL200 = 2.21 vs. CAL300 = 2.28 mM), and differences were observed during the first 5 d postpartum for iCa and tCa, and the first 7 d postpartum for tP. Concentrations of tMg were lower in calcitriol-treated cows than in CON cows (CON = 0.81 vs. CAL200 = 0.78 vs. CAL300 = 0.75 mM), and differences were observed during the first 5 d postpartum. Calcitriol increased plasma concentrations of cOC (CON = 14.5 vs. CAL200 = 23.0 vs. CAL300 = 19.8 ng/mL) and uOC (CON = 1.6 vs. CAL200 = 3.4 vs. CAL300 = 2.6 ng/mL). Prevalence of subclinical hypocalcemia was less in calcitriol-treated cows (CON = 19.0 vs. CAL200 = 4.7 vs. CAL300 = 9.3%); however, benefits on health were only observed in overconditioned cows (n = 270/1,350). Calcitriol reduced incidence of retained placenta (CON = 14.3 vs. CAL200 = 5.1 vs. CAL300 = 5.9%), puerperal metritis (CON = 12.7 vs. CAL200 = 6.1 vs. CAL300 = 2.5%), and morbidity (CON = 72.1 vs. CAL200 = 57.4 vs. CAL300 = 56.9%) in cows with BCS greater than 3.50, but no benefit on health was observed in cows with BCS equal to or less than 3.50 at parturition. Milk yield did not differ among treatments. Pregnancy at first AI did not differ, but pregnancy rate after the first AI was slower for calcitriol-treated cows because of reduced insemination rate and pregnancy per AI. We found that CAL200 reduced death but increased culling in cows without calving problems. Collectively, results indicate that treatment with calcitriol at parturition was effective in improving concentrations of iCa, tCa, and tP, which reduced the risk of hypocalcemia. Pregnancy rate was reduced by calcitriol treatment, and benefits on health performance were limited to overconditioned cows. Thus, treatment of all cows is not supported, and proper identification of cohorts of cows that benefit from postpartum interventions that increase blood calcitriol or calcium is needed.  相似文献   

2.
The first objective of this study was to compare the productive and reproductive performance of Holstein-Friesian (CH HF), Fleckvieh (CH FV), and Brown Swiss (CH BS) cows of Swiss origin with New Zealand Holstein-Friesian (NZ HF) cows in pasture-based compact-calving systems; NZ HF cows were chosen as the reference population for such grazing systems. The second objective was to analyze the relationships within and between breeds regarding reproductive performance, milk yield, and body condition score (BCS) dynamics. On 15 commercial Swiss farms, NZ HF cows were paired with Swiss cows over 3 yr. Overall, the study involved 259 complete lactations from 134 cows: 131 from 58 NZ HF, 40 from 24 CH HF, 43 from 27 CH FV, and 45 from 25 CH BS cows. All production parameters were affected by cow breed. Milk and energy-corrected milk yield over 270 d of lactation differed by 1,000 kg between the 2 extreme groups; CH HF having the highest yield and CH BS the lowest. The NZ HF cows had the greatest milk fat and protein concentrations over the lactation and exhibited the highest lactation persistency. Body weight differed by 90 kg between extreme groups; NZ HF and CH BS being the lightest and CH HF and CH FV the heaviest. As a result, the 2 HF strains achieved the highest milk production efficiency (270-d energy-corrected milk/body weight0.75). Although less efficient at milk production, CH FV had a high 21-d submission rate (86%) and a high conception rate within 2 inseminations (89%), achieving high pregnancy rates within the first 3 and 6 wk of the breeding period (65 and 81%, respectively). Conversely, poorer reproductive performance was recorded for CH HF cows, with NZ HF and CH BS being intermediate. Both BCS at nadir and at 100 d postpartum had a positive effect on the 6-wk pregnancy rate, even when breed was included in the model. The BCS at 100 d of lactation also positively affected first service conception rate. In conclusion, despite their high milk production efficiency, even in low-input systems, CH HF were not suited to pasture-based seasonal-calving production systems due to poor reproductive performance. On the contrary, CH FV fulfilled the compact-calving reproduction objectives and deserve further consideration in seasonal calving systems, despite their lower milk production potential.  相似文献   

3.
The objectives of this study were to describe the associations of subclinical hypocalcemia with milk yield, and feeding, drinking, and resting behavior during the period around calving. Blood was sampled within 24h of calving and analyzed for serum total calcium. Fifteen Holstein dairy cows were classified as having subclinical hypocalcemia (serum calcium concentration ≤ 1.8 mmol/L, without clinical milk fever) and were matched with 15 control cows (serum calcium concentration >1.8 mmol/L) based on parity and presence of other diseases. Daily feeding and drinking behavior were monitored using an electronic feeding system (Insentec, BV, Marknesse, the Netherlands) and summarized by week relative to calving (wk -3, -2, -1, +1, +2, and +3). Standing behavior was monitored from 7 d before until 7 d after calving using dataloggers. Daily milk yields were obtained for all cows up to 280 d in milk (DIM). These data were summarized by week for the first 4 wk of lactation to assess short-term differences in milk yield, and were summarized into 4-wk periods to assess long-term (280 DIM) differences in milk yield between groups. Cows with subclinical hypocalcemia produced, on average, 5.7 kg/d more milk during wk 2, 3, and 4 compared with control cows; however, only subclinically hypocalcemic cows in their third lactation sustained greater milk yields throughout 280 DIM. Despite greater milk yield during the weeks following calving, cows with subclinical hypocalcemia did not consume more water after calving and tended to have greater dry matter intake only during wk 2. However, these animals made fewer visits to the water bins during the first 2 wk after calving and tended to make fewer visits to the feed bins during wk 1 and 3, suggesting that they used these resources more efficiently. Dry matter intake was, on average, 1.7 kg/d greater during wk -2 and -1 among cows subsequently diagnosed with subclinical hypocalcemia compared with control cows but neither group was lactating during this period. Cows with subclinical hypocalcemia stood for 2.6h longer during the 24-h period before parturition, which may suggest these animals experience increased discomfort at calving; these cows spent 2.7h less time standing during d +1. Although milk yield was greater among cows with subclinical hypocalcemia, this study controlled for the confounding effects of disease incidence; these results do not refute previous research that associates subclinical hypocalcemia with an increased risk for health disorders. The mechanisms by which subclinical hypocalcemia is associated with behavior and production require further investigation.  相似文献   

4.
A study was conducted to evaluate the potential association between Ca status at calving and postpartum energy balance, liver lipid infiltration, disease occurrence, milk yield and quality parameters, and fertility in Holstein cows. One hundred cows were assigned to 1 of 2 groups based on whole-blood ionized Ca concentration ([iCa]) on the day of calving [d 0; hypocalcemic [iCa] <1.0 mmol/L (n = 51); normocalcemic [iCa] ≥1.0 mmol/L (n = 49)]. Cows were blocked based on calving date and parity. Blood samples were collected approximately 14 d from expected calving date (d −14), the day of calving (d 0), and on d 3, 7, 14, 21, and 35 postpartum for measurement of plasma nonesterified fatty acid, iCa, total Ca, glucose, and total and direct bilirubin concentrations, and plasma aspartate aminotransferase and gamma glutamyl transferase activities. Liver biopsies were obtained from a subset of cows on d 0, 7, and 35 for quantification of lipid content. Milk samples were collected on d 3, 7, 14, 21, and 35 postpartum for measurement of somatic cell count and percentages of protein, fat, and solids-not-fat. Data for peak test-day milk yield, services per conception, and days open were obtained from Dairy Herd Improvement Association herd records. Disease occurrence was determined based on herd treatment records. Hypocalcemic cows had significantly higher nonesterified fatty acids on d 0. Hypocalcemic cows also had significantly more lipid in hepatocytes on d 7 and 35 postpartum. However, no statistically significant differences were observed between groups for plasma aspartate aminotransferase and gamma glutamyl transferase activities or total and direct bilirubin concentrations. Milk protein percentage was lower in hypocalcemic cows on d 21 and 35. However other milk quality variables (somatic cell count, milk fat percentage, and solids-not-fat) and milk yield variables (peak test-day milk yield and 305-d mature-equivalent 4% fat-corrected milk yield) did not differ between groups. No differences were observed between groups in the occurrence of clinical mastitis, ketosis, displaced abomasum, dystocia, retained placenta, metritis, or fertility measures (percentage cycling at 50–60 d postpartum, services per conception, or days open). These data suggest that early lactation fatty acid metabolism differs between cows with subclinical hypocalcemia and their normocalcemic counterparts.  相似文献   

5.
《Journal of dairy science》2021,104(9):9703-9714
Supplementation of Ca products to cows after calving is common in calving protocols. This study evaluated the effect of a Ca-energy drink voluntarily consumed on milk yield and composition, odds to reach a next lactation, and calving interval. This prospective randomized study included a blinded placebo and was conducted in 10 commercial dairy farms that included 504 Holstein dairy cows. Cows were blocked within farm by calving sequence and parity (primiparous or multiparous). Within each block of 2 animals, cows were randomly assigned to 1 of 2 treatments: a Ca-energy supplement drink (CAE, n = 255) providing 45 g of Ca and other components (dextrose, lactose, protein, fat, other minerals and vitamins), a placebo (i.e., 100 g of cellulose and 20 g of dextrose; CON, n = 249), both strictly offered to the animals for voluntary consumption. Treatments were offered mixed in 20 L of water within 3 h after calving. Milk data were analyzed using 2 approaches. The first, most classical, evaluated the effect of the treatments on observed milk data, whereas the second approach evaluated the effect on milk residuals (i.e., the difference between observed milk data and a prediction made by a herd test-day model). Eighty-one percent of the CAE cows fully consumed the treatment, whereas only 50% of CON cows did. No differences were detected for observed milk yield, nor for composition in multiparous cows. The only production effect observed on multiparous cows was a treatment by time interaction for milk fat yield, reflecting greater yield for CAE cows between 100 and 150 d in milk only. However, primiparous cows receiving CAE had increased milk (+0.8 kg/d) and component yields (i.e., +40 g/d of protein) compared with CON cows. These effects were more evident when milk and milk components residuals data were analyzed (i.e., +1.5 kg/d for milk yield and +57 g/d of protein). This was achieved with a herd test-day model that allowed milk and milk components data to be adjusted for environmental and genetic factors (i.e., farm effect, time effect, age at calving, parity, stage of lactation, breeding value). The treatment had no effect on the probability of reaching the next lactation (i.e., 72% of CAE cows had a next calving against 69% in CON). Primiparous cows receiving CAE had a longer calving interval compared with CON cows. At 400 d after the application of the treatment, 65% of CAE primiparous cows had a next calving, whereas 81% of CON primiparous cows had calved already. The supplementation of the tested oral Ca-energy solution at calving did not increase the probability to reach a next lactation for neither primiparous or multiparous, but positively influenced milk yield and milk component yields for primiparous.  相似文献   

6.
This study compared physiological and productive parameters in 3/4 Holstein × 1/4 Gir dairy cows receiving a prepartum concentrate containing ammonium chloride to reduce urine pH near 7.0 (CON; n = 17), or a commercial anionic supplement to reduce urine pH near 6.0 (SUPP; n = 17). Nonlactating, multiparous, pregnant cows were assigned to receive SUPP or CON beginning 21 d before expected date of calving. Cows were maintained in a single drylot pen with ad libitum access to corn silage, and individually received their prepartum concentrate once daily (0800 h) before calving. Cows from both treatments completely consumed their concentrate allocation within 30 min after feeding. Cow body weight and body condition score were recorded once weekly, urine pH measured every 3 d, and blood samples collected on d ?21, ?14, ?9, ?6, and ?3 relative to expected calving date. After calving (d 0), cows were moved to an adjacent drylot pen with ad libitum access to water and a total mixed ration, and were milked twice daily (0600 and 1700 h). Cow body weight and body condition score were recorded once weekly and individual milk production was recorded daily until 30 d in milk (DIM). Blood samples were collected before each milking during the first 5 DIM, as well as at 6, 9, 16, 23, and 30 DIM before the morning milking. Based on actual calving dates, cows received SUPP or CON for (mean ± standard error) 19.2 ± 1.2 and 19.0 ± 0.9 d before calving, respectively. Urine pH was less in SUPP versus CON cows during the last 15 d of gestation (6.12 vs. 7.15, respectively). Milk yield during the first 5 DIM and throughout the experimental period was greater in SUPP versus CON cows (by 20 and 14%, respectively), whereas serum Ca concentrations did not differ between treatments during the first 5 DIM. Serum concentrations of fatty acids were greater in SUPP versus CON cows 3 d before and at calving (by 52 and 22%, respectively), whereas SUPP cows had lower serum glucose and cortisol concentration at calving (by 23 and 27%, respectively). Hence, the SUPP treatment decreased prepartum urine pH near 6.0 in Holstein × Gir dairy cows without depressing concentrate intake compared with CON, although total dry matter intake was not evaluated to fully investigate feed intake responses. Moreover, the SUPP treatment transiently affected serum glucose, fatty acids, and cortisol concentrations near the time of calving, and resulted in greater milk yield during the initial 30 DIM compared with CON.  相似文献   

7.
《Journal of dairy science》2019,102(6):5191-5207
The objective of this study was to determine the effects of feeding synthetic zeolite A for 3 wk before expected calving on peripartal serum mineral concentrations, hypocalcemia, oxidant status, and performance. Holstein cows (n = 55) entering their second or greater lactations were assigned randomly to 1 of 2 dietary treatments starting 21 d before expected calving: control (CON: 40% corn silage, 33% wheat straw, and 27% concentrate; n = 29) or experimental [EXP: CON plus zeolite A (X-Zelit, Protekta Inc., Lucknow, ON, Canada/Vilofoss, Graasten, Denmark; n = 26) at an inclusion rate of 3.3% of dry matter, targeting 500 g/d as-fed]. Cows were fed the same postpartum diet and housed in individual tiestalls through 28 d in milk. Cows fed EXP had higher serum Ca concentrations as parturition approached and during the immediate postpartum period. Serum P concentrations were lower for the EXP-fed cows during the prepartum period and the first 2 d of lactation, whereas serum Mg concentrations were lower than those of the CON-fed cows only during the immediate periparturient period. Cows fed EXP had decreased prevalence of subclinical hypocalcemia (SCH) from d −1 through 3 relative to day of parturition, with the largest difference occurring within the first day postpartum. Prepartum dry matter intake tended to be decreased and rumination was decreased in cows fed EXP; however; postpartum dry matter intake, rumination, milk yield, milk component yield, and colostrum measurements did not differ between treatments. Cows fed EXP tended to have increased hazard of pregnancy by 150 d in milk when controlling for parity compared with CON-fed cows; potential reproductive benefits merit further study. This study demonstrated that zeolite A supplementation during the prepartum period results in markedly improved serum Ca concentrations around parturition and similar postpartum performance compared with controls and is effective at decreasing hypocalcemia in multiparous Holstein cows.  相似文献   

8.
《Journal of dairy science》2023,106(4):3023-3042
An experiment was conducted to evaluate the effects of inorganic trace minerals (TM) and reduced levels of TM by using proteinate forms of Co, Zn, Mn, and Cu, and Se-yeast in diets of transition cows on performance, TM concentrations in colostrum, plasma, and liver, blood metabolites, antioxidant status, peripheral neutrophil activity, and oocyte quality. Thirty-two Holstein cows (22 multiparous and 10 primiparous cows) were enrolled in this study from 30 d before the expected calving date to 56 DIM. Cows were blocked according to body condition score, parity, and previous milk yield and randomly assigned to one of the following treatments: control (CON), with TM (Zn, Cu, Mn, and Co) supplied in form of sulfate and Se as sodium selenite to meet or exceed requirement estimates of the National Research Council; and proteinate trace minerals (PTM), with TM supplied bound with AA and peptides at 50% of CON levels and inorganic Se replaced with Se-yeast at 100% of CON level. Treatments were supplied until 56 DIM. Eight cows were removed from the study because of early calving (n = 3) or health issues (n = 5); thus, data of 24 cows (16 multiparous and 8 primiparous cows) were used in the statistical analysis. No differences between treatments were detected on nutrient intake or digestibility. Total excretion of purine derivatives was decreased when feeding PTM during the prepartum period. Feeding reduced levels of TM in proteinate form resulted in greater yield of milk (27.7 and 30.9 kg/d for CON and PTM, respectively) and protein (0.890 and 0.976 kg/d) between wk 5 and 8 of lactation. No treatment differences were detected for feed efficiency, milk somatic cell count, and milk urea nitrogen. Cows fed PTM had lower milk fat concentration during the 56 d of evaluation (4.08 and 3.74% for CON and PTM, respectively). Selenium concentration was greater in colostrum of cows fed PTM compared with CON (48.5 and 71.3 µg/L for CON and PTM, respectively), whereas Zn, Cu, and Mn concentrations were not different. Cows fed PTM showed lower liver Cu concentration compared with CON (51.4 and 73.8, respectively). Plasma concentrations of Mn and Zn were lower, but plasma Se concentration tended to be higher with PTM treatment. Feeding PTM resulted in greater blood concentrations of urea-N (16.6 and 18.2 mg/dL for CON and PTM, respectively) and β-hydroxybutyrate (0.739 and 0.940 mmol/L). Counts of lymphocytes were higher with PTM but counts of monocytes were lower in complete blood cell count. No differences were observed in serum concentrations of superoxide dismutase and glutathione peroxidase. No differences were detected in phagocytosis and oxidative burst potential of neutrophils after incubation with bacteria. Cows fed PTM had fewer viable oocytes per ovum pick-up in comparison with CON (8.00 and 11.6). Feeding PTM to transition cows may sustain performance without altering neutrophil activity despite some alterations in blood TM concentrations. More studies should be performed to evaluate production and fertility measurements when reducing TM dietary levels by using proteinate forms and Se-yeast with larger number of animals.  相似文献   

9.
The objective of this study was to evaluate the effects of supplementing a Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V, Cedar Rapids, IA) during the periparturient period (d ?28 ± 3 to 44 ± 3 relative to calving) on dry matter intake (DMI), milk production, apparent total-tract nutrient digestibility, and postpartum ovarian activity of dairy cows fed fresh diets varying in starch content. From d 28 ± 3 before the expected calving date until d 44 ± 3 after calving, 117 Holstein cows were fed diets with SCFP (SCFP; n = 59) or without (control, CON; n = 58). A common, basal, controlled-energy close-up diet (net energy for lactation: 1.43 Mcal/kg; 13.8% starch) was fed before calving. Cows within each treatment (CON or SCFP) were fed either a low- (LS; 22.1% starch) or high-starch (HS; 28.3% starch) diet from d 1 to 23 ± 3 after calving (fresh period), resulting in 4 treatment groups: LS-CON (n = 30), LS-SCFP (n = 29), HS-CON (n = 28), and HS-SCFP (n = 30). All cows were fed the HS diets from d 24 ± 3 to 44 ± 3 after calving (post-fresh period). Cows were assigned to treatment balanced for parity, body condition score, body weight, and expected calving date. Milk yield was higher for cows fed the LS diets compared with those fed the HS diets during the fresh period (34.1 vs. 32.1 kg/d), whereas DMI and 3.5% fat-corrected milk yield (FCM) were not affected by dietary starch content, and LS cows tended to lose more body condition than HS cows (?0.42 vs. ?0.35 per 21 d) during the fresh period. Overall DMI during the close-up and fresh periods did not differ between SCFP and CON cows. However, SCFP supplementation transiently increased DMI on d 1 (13.0 vs. 11.9 kg/d) and 5 (15.5 vs. 14.1 kg/d) after calving compared with CON. During the post-fresh period, SCFP cows tended to eat less than CON cows (19.8 vs. 20.6 kg/d) but had similar 3.5% FCM (44.9 vs. 43.6 kg/d), resulting in greater feed efficiency for SCFP cows (FCM/DMI; 2.27 vs. 2.13). Neither starch content of fresh diets nor SCFP supplementation affected the interval from calving to first ovulation or the incidence of double ovulation. These findings suggest that feeding low-starch diets during the fresh period can increase milk production of dairy cows during the fresh period, and that supplementation of SCFP may increase feed intake around calving and feed efficiency in the post-fresh period.  相似文献   

10.
The objectives of the study were to compare the ovarian activity of Holstein-Friesian (CH HF), Fleckvieh (CH FV) and Brown Swiss (CH BS) dairy cows of Swiss origin with that of Holstein-Friesian (NZ HF) dairy cows of New Zealand origin, the latter being used as a reference for reproductive performance in pasture-based seasonal calving systems. Fifty, second-lactation NZ HF cows were each paired with a second-lactation Swiss cow (17, 15 and 18 CH HF, CH FV and CH BS respectively) in 13 pasture-based, seasonal-calving commercial dairy farms in Switzerland. Ovarian activity was monitored by progesterone profiling from calving to first breeding service. CH BS cows produced less energy-corrected milk (mean 22·8 kg/d) than the other breeds (26·0-26·5 kg/d) during the first 100 d of lactation. CH HF cows had the lowest body condition score (BCS) at calving and the greatest BCS loss from calving to 30 d post partum. Commencement of luteal activity (CLA) was later for NZ HF than for CH FV (51·5 v. 29·2 d; P <0·01), with CH HF and CH BS intermediate (43 d). On average, NZ HF and CH HF cows had one oestrous cycle before the onset of the seasonal breeding period; this was less (P<0·01) than either CH FV (1·7) or CH BS (1·6). There was a low prevalence of luteal persistency (3%) among the studied cows. First and second oestrous cycle inter-ovulatory intervals did not differ between breeds (20·5-22·6 d). The luteal phase length of CH BS during the second cycle was shorter (10·6 d) than that of the other breeds (13·8-16·0 d), but the inter-luteal interval was longer (9·8 d v. 7·0-8·0 d). The results suggest that the Swiss breeds investigated have a shorter interval from calving to CLA than NZ HF cows.  相似文献   

11.
Hypocalcemia affects almost 50% of all dairy cows. Our laboratory has previously demonstrated that infusions of the serotonin precursor 5-hydroxy-l-tryptophan (5-HTP) increase circulating calcium concentrations in the Holstein transition cow. It is unknown whether feeding a negative dietary cation-anion difference (DCAD) diet alters the relationship between 5-HTP and hypocalcemia. The main objective of this study was to determine whether feeding a negative DCAD (?DCAD) diet before calving in conjunction with 5-HTP treatment could further diminish the magnitude of hypocalcemia at the time of calving. We used a randomized complete block design with a 2 × 2 factorial arrangement. Thirty-one multiparous Holstein cows were fed either a positive (+13 mEq/100 g) or negative (?13 mEq/100 g) DCAD diet 21 d before parturition and were intravenously infused daily with saline or 5-HTP (1 mg/kg) starting 7 d before the estimated date of parturition. Cows were blocked by parity and were randomly assigned to 1 of 4 treatment groups: positive DCAD plus saline, positive DCAD plus 5-HTP, negative DCAD plus saline, and negative DCAD plus 5-HTP, resulting in n = 8 per group. Total calcium (tCa), ionized calcium (iCa), and feed intake were recorded. The iCa was elevated prepartum in the ?DCAD/5-HTP group compared with the other treatment groups as well as on d 0 and 1 postpartum. Although differences in tCa were not significant across the pre- or postpartum periods, tCa was numerically higher on d 0 and significantly higher on d 1 in ?DCAD/5-HTP cows compared with all other groups. Prepartum the ?DCAD/5-HTP treatment group ate less than the other treatment groups; however, postpartum dry matter intake differences were not significant. These findings demonstrate that feeding a ?DCAD diet in conjunction with 5-HTP prepartum can increase postpartum circulating iCa concentrations and therefore diminish the magnitude of hypocalcemia at the time of parturition.  相似文献   

12.
《Journal of dairy science》2023,106(1):653-663
Dairy cows are predisposed to diseases during the postpartum period. Dystocia has been associated with increased risk for disease, which is likely the result of increased tissue trauma and stress during the prolonged parturition. To attenuate the inflammatory response seen in dystocic animals and improve well-being, we assessed the effects of a glucocorticoid, dexamethasone administered within 12 h after calving. Dystocia was defined as a difficult birth resulting in a prolonged calving (≥70 min after the amniotic sac appears) and was monitored through 3 video cameras in the close-up dry-cow pen. Cows meeting the dystocia definition were randomly assigned to receive a single intramuscular injection of either dexamethasone (DEX; 0.1 mg/kg of body weight; n = 43) or saline (CON, n = 44) within 12 h following a dystocic calving. Serum haptoglobin, blood β-hydroxybutyrate (BHB) concentrations, body temperature, and several behaviors were measured for the first 7 d postpartum. Additionally, milk production and components for the first 120 d were recorded. Using a mixed model, the fixed effects of treatment, parity, calving assistance, and time, along with 2- and 3-way interactions, were analyzed with cow as a random effect. We observed that primiparous DEX cows had greater serum haptoglobin concentrations on d 3 and d 7 postpartum compared with primiparous CON cows. There was no difference between treatment groups for blood BHB concentrations and body temperature. Behavior was altered between treatments, with DEX cows having reduced activity for the first week postpartum, as well as less restlessness and increased lying times on some of the days following calving. Treatment interacted with time for milk yield, such that DEX cows produced 2.7 kg/d less milk than CON cows for the first month following calving. The administration of dexamethasone resulted in changes in behavioral measurements, which could suggest a reduction in discomfort; however, due to the reduction in milk yield for the first month following calving, DEX administration may not be applicable for typical farm use. Additional research is needed to investigate treatments for cows experiencing dystocia without detrimental effects on milk yield.  相似文献   

13.
The objective of this study was to assess the effects of feeding negative dietary cation-anion difference (DCAD) dry cow diets on postpartum health. Cows from 4 commercial dairy farms in Ontario, Canada, were enrolled in a pen-level controlled trial from November 2017 to April 2019. Close-up pens (1 per farm), with cows 3 wk before expected calving, were randomly assigned to a negative DCAD [TRT; ?108 mEq/kg of dry matter (DM); target urine pH 6.0–6.5] or a control diet (CON; +105 mEq/kg of DM with a placebo supplement). Each pen was fed TRT or CON for 3 mo (1 period) then switched to the other treatment for the next period, with 4 periods per farm. Urine pH was measured weekly until calving, and body condition score (BCS) was measured at enrollment and at 5 wk postpartum. Data from 15 experimental units [8 TRT and 7 CON, with 1,086 (TRT: n = 681; CON: n = 405) observational units (cows)] that received the assigned diet for >1 wk were included. The incidence of milk fever (MF), retained placenta (RP), metritis, hyperketonemia (blood β-hydroxybutyrate >1.2 mmol/L, measured weekly in wk 1 and 2), clinical mastitis within 30 DIM (MAST), displaced abomasum (DA) within 30 d in milk (DIM), purulent vaginal discharge (PVD, assessed once at wk 5), and number of disease events (≥1 or ≥2) were analyzed with logistic regression models with treatment, parity, BCS, and their interactions, accounting for pen-level randomization and clustering of animals within farm with random effects, giving 10 degrees of freedom to test treatment effects. Multiparous cows fed TRT had greater blood calcium between 1 and 4 DIM than multiparous cows fed CON, and the prevalence of subclinical hypocalcemia (total Ca ≤2.14 mmol/L) was lesser when fed TRT compared with CON (d 1: 73 ± 6% vs. 93 ± 4%; d 2: 65 ± 7% vs. 90 ± 5%), with no differences between treatments detected in primiparous cows. We detected interactions of treatment and BCS at enrollment for MF in multiparous cows and of treatment and parity for ≥2 disease events. Overconditioned (BCS ≥3.75) multiparous cows had reduced incidence of MF when fed TRT (TRT: 2 ± 1%, vs. CON: 13 ± 8%). We detected no treatment effects on RP, metritis, hyperketonemia, or PVD incidence. Cows fed TRT had lesser incidence of DA (1.7 ± 0.7% vs. 3.6 ± 1.6%) and tended to have lesser incidence of MAST compared with CON (1.8% ± 0.6% vs. 4.4 ± 1.4%). No treatment effect was detected on ≥1 disease events (TRT: 38 ± 7%, vs. CON: 42 ± 8%); however, multiparous cows on TRT were less likely to have ≥2 disease events than cows on CON (14 ± 4% vs. 23 ± 6%). Under commercial herd conditions, feeding prepartum diets with negative DCAD improved several measures of postpartum health.  相似文献   

14.
The objective of this study was to evaluate the effects of the starch content of pre- and postpartum diets on productivity, plasma energy metabolites, and serum markers of inflammation of dairy cows during the calving transition period. Eighty-eight primiparous and multiparous cows were randomly assigned to pre- and postpartum dietary treatments balanced for parity and pretrial body condition score at d 28 ± 3 before expected calving date. Cows were fed either a control [Control; 14.0% starch, dry matter (DM) basis] or high-starch (High; 26.1% starch, DM basis) prepartum diet commencing 28 ± 3 d before expected calving date. Following calving, cows were fed either a high-fiber (HF; 33.8% neutral detergent fiber, 25.1% starch, DM basis) or high-starch (HS; 27.2% neutral detergent fiber, 32.8% starch, DM basis) postpartum diet for the first 20 ± 2 d following calving. Cows fed the High prepartum diet had greater DM intake (12.4 vs. 10.2 kg/d), plasma concentrations of insulin (1.72 vs. 14.2 ng/mL), glucose (68.1 vs. 65.0 mg/dL), and glucagon-like peptide-2 (0.41 vs. 0.32 ng/mL) before parturition, but increased plasma free fatty acid concentration (452 vs. 363 µEq/L) and milk fat yield (1.64 vs. 1.48 kg/d) after parturition. Cows fed the HS postpartum diet had lower plasma free fatty acid (372 vs. 442 µEq/L) and serum haptoglobin (0.46 vs. 0.70 mg/mL) concentrations over a 3-wk period after calving. In addition, there was a tendency for interaction between prepartum and postpartum diets for milk yield, where feeding the HS postpartum diet increased milk yield compared with the HF diet for cows fed the Control prepartum diet (40.8 vs. 37.9 kg/d) but not for cows fed the High prepartum diet. These results suggest that management efforts to minimize the change in diet fermentability during the calving transition by feeding the High prepartum diet, the HF postpartum diet, or both did not increase productivity of dairy cows but increased fat mobilization after calving. Our findings also suggest that feeding high-starch postpartum diets can decrease fat mobilization and serum indicators of systemic inflammation and increase milk production even with the transition from a low-starch prepartum diet.  相似文献   

15.
A double-blind field trial was conducted on a commercial dairy to study the effects of feeding a direct-fed microbial (DFM) product consisting of 2 strains of Enterococcus faecium plus Saccharomyces cerevisiae yeast on prepartum and postpartum performance of Holstein cows. Treatments consisted of the normal pre- and post-fresh TMR supplemented with the DFM (2 g/cow per d) or a placebo. Treatments started approximately 10 d prepartum and continued until about 23 d in milk (DIM). A total of 366 Holstein cows were enrolled in 1 of 2 placebo groups or 2 DFM-supplemented groups. Groups were enrolled consecutively, starting with the placebo treatment. Sample size was limited to 4 groups because the cooperating dairy prematurely terminated the study due to increased health problems in one of the groups. Blood samples were taken during the prefresh period between 2 and 10 d prior to calving and at weekly intervals from 3 to 23 DIM. Blood concentrations of nonesterified fatty acids before calving and β-hydroxy-butyrate after calving were not affected by treatment. Supplementation with the DFM product increased milk fat percentage for the first lactation cows and increased milk protein percentage for the second and greater lactation cows during the first 85 DIM. Second-lactation cows fed the DFM product received fewer antibiotic treatments before 85 DIM than cows receiving the placebo. This validated the dairy producer's concern that cows consuming one of the diets (revealed to be the placebo diet after the study was completed) were experiencing more health problems. Most measures of milk yield were numerically increased by supplementation with the DFM product. However, differences in milk yield were not significant. Key covariates for main study outcomes included milk yield in the previous (first) lactation, body condition score prior to calving, days spent in the maternity pen, and stocking density of the pre-fresh pen.  相似文献   

16.
Betaine is a natural compound found in sugar beets that serves as a methyl donor and organic osmolyte when fed to animals. The objective was to evaluate the effect of feeding betaine-containing molasses on performance of transition dairy cows during late summer in 2 trials. In early September, cows were randomly assigned to betaine (BET) or control (CON) groups either shortly after dry off (trial 1; n = 10 per treatment) or 24 d before calving (trial 2; n = 8 per treatment) based on parity and previous mature equivalent milk yield. Cows were fed common diets supplemented either with a liquid supplement made of molasses from sugar cane and condensed beet solubles containing betaine [BET, 89.1 g/kg of dry matter (DM)] or a sugar cane molasses-based liquid supplement without betaine (CON) until 8 wk postpartum. The liquid supplements had similar nutrient contents and were fed at a rate of 1.1 and 1.4 kg DM/d for pre- and postpartum cows, respectively. Starting at their entry in the studies, cows were housed in the same freestall barn without a cooling system. After calving, all cows were housed in the same barn cooled by misters and fans and milked thrice daily. Intake was recorded daily and body weight and body condition score were assessed every 2 wk. Milk yield was recorded at each milking and composition was analyzed weekly. Blood samples were collected weekly from a subset of cows to assess concentrations of metabolites and AA. No treatment effects were apparent for DM intake and body weight in the prepartum and postpartum periods. For cows enrolled at dry off, BET supported higher milk yield (45.1 vs. 41.9 kg/d) and fat content (4.78 vs. 4.34%) and elevated plasma concentrations of nonesterified fatty acids and β-hydroxybutyrate in early lactation compared to CON. However, no differences were observed for milk yield, most milk component contents and yields, and blood metabolites between treatments for cows enrolled during the close-up period. Compared to cows in the CON group, BET cows enrolled during the far-off period tended to have lower plasma concentrations of Met, Thr, and Trp during the pre- and postpartum periods. They also had lower plasma concentrations of Lys and Phe before calving but higher plasma Gly concentration after parturition. In conclusion, feeding a betaine-containing liquid supplement from far-off through early lactation improves lactation performance but increases adipose tissue mobilization and production of ketone bodies in early lactation.  相似文献   

17.
Our objectives were to determine the effects of an injectable formulation of calcitriol on mineral metabolism and immune function in postpartum Holstein cows that received an acidogenic diet prepartum to minimize hypocalcemia. In experiment 1, cows within 6 h of calving received calcitriol (0, 200, or 300 μg) to determine the dose needed to increase plasma concentrations of Ca; 300 μg was sufficient to sustain Ca for at least 3 d. In experiment 2, multiparous cows were assigned randomly to receive only vehicle (control, n = 25) or 300 μg of calcitriol (n = 25) subcutaneously within the first 6 h after calving. Blood was sampled before treatment and 12 h later, then daily until 15 d in milk (DIM), and analyzed for concentrations of ionized Ca (iCa), total Ca (tCa), total Mg (tMg), and total P (tP), metabolites, and hormones. Urine was sampled in the first 7 DIM and analyzed for concentrations of tCa, tMg, and creatinine. Neutrophil function was evaluated in the first week postpartum. Dry matter intake and production performance were evaluated for the first 36 DIM. Calcitriol administration increased concentrations of calcitriol in plasma within 12 h of application from 51 to 427 pg/mL, which returned to baseline within 5 d. Concentrations of iCa and tCa increased 24 h after treatment with calcitriol. Concentrations of iCa (control = 1.08 vs. calcitriol = 1.20 mM), tCa (control = 2.23 vs. calcitriol = 2.33 mM), and tP (control = 1.47 vs. calcitriol = 1.81 mM) remained elevated in cows treated with calcitriol until 3, 5, and 7 DIM, respectively, whereas concentration of tMg (control = 0.76 vs. calcitriol = 0.67 mM) was less in calcitriol cows than control cows until 3 DIM. Concentrations of parathyroid hormone decreased in calcitriol cows compared with control cows (control = 441 vs. calcitriol = 336 pg/mL). Calcitriol tended to increase plasma concentrations of β-hydroxybutyrate and serotonin, but concentrations of glucose, nonesterified fatty acids, and C-telopeptide of type I collagen in plasma did not differ between treatments. Cows treated with calcitriol excreted more urinary tCa (control = 0.5 vs. calcitriol = 2.1 g/d) and tMg (control = 4.5 vs. calcitriol = 5.0 g/d) in the first 7 and 2 DIM, respectively, than control cows. Compared with control, calcitriol improved the proportion of neutrophils with oxidative burst (control = 31.9 vs. calcitriol = 40.6%), mean fluorescence intensity for oxidative burst (control = 90,900 vs. calcitriol = 99,746), and mean fluorescence intensity for phagocytosis (control = 23,887 vs. calcitriol = 28,080). Dry matter intake, yields of milk, and milk components did not differ between treatments. Administration of 300 μg of calcitriol at calving was safe and effective in increasing blood concentration of iCa and plasma concentrations of calcitriol, tCa, and tP for the first 6 d after treatment, and improved measures of innate immune function in early-lactation Holstein cows.  相似文献   

18.
Although interest in crossbreeding within dairy systems has increased, the role of Jersey crossbred cows within high concentrate input systems has received little attention. This experiment was designed to examine the performance of Holstein-Friesian (HF) and Jersey × Holstein-Friesian (J × HF) cows within a high concentrate input total confinement system (CON) and a medium concentrate input grazing system (GRZ). Eighty spring-calving dairy cows were used in a 2 (cow genotype) × 2 (milk production system) factorial design experiment. The experiment commenced when cows calved and encompassed a full lactation. With GRZ, cows were offered diets containing grass silage and concentrates [70:30 dry matter (DM) ratio] until turnout, grazed grass plus 1.0 kg of concentrate/day during a 199-d grazing period, and grass silage and concentrates (75:25 DM ratio) following rehousing and until drying-off. With CON, cows were confined throughout the lactation and offered diets containing grass silage and concentrates (DM ratio; 40:60, 50:50, 40:40, and 75:25 during d 1 to 100, 101 to 200, 201 to 250, and 251 until drying-off, respectively). Full-lactation concentrate DM intakes were 791 and 2,905 kg/cow for systems GRZ and CON, respectively. Although HF cows had a higher lactation milk yield than J × HF cows, the latter produced milk with a higher fat and protein content, so that solids-corrected milk yield (SCM) was unaffected by genotype. Somatic cell score was higher with the J × HF cows. Throughout lactation, HF cows were on average 37 kg heavier than J × HF cows, whereas the J × HF cows had a higher body condition score. Within each system, food intake did not differ between genotypes, whereas full-lactation yields of milk, fat plus protein, and SCM were higher with CON than with GRZ. A significant genotype × environment interaction was observed for milk yield, and a trend was found for an interaction with SCM. Crossbred cows on CON gained more body condition than HF cows, and overall pregnancy rate was unaffected by either genotype or management system. In summary, milk and SCM yields were higher with CON than with GRZ, whereas genotype had no effect on SCM. However, HF cows exhibited a greater milk yield response and a trend toward a greater SCM yield response with increasing concentrate levels compared with the crossbred cows.  相似文献   

19.
The objective of the present study was to evaluate the effects of postpartum oral calcium supplementation on milk yield, energy-corrected milk yield, milk fat concentration, milk protein concentration, and somatic cell count linear score across the first 3 monthly tests postpartum, peak milk yield, risk of pregnancy at first service, and hazard of pregnancy by 150 d in milk on 1,129 multiparous Jersey and Jersey × Holstein crossbreed cows from 2 commercial dairies. After calving, cows were systematically assigned to control (no oral calcium supplementation; n = 567) or oral calcium supplementation at 0 and 1 d in milk (oral Ca; 50 to 60 g of calcium as boluses; n = 562). Monthly test milk yield, composition, and somatic cell count information was obtained from the Dairy Herd Improvement Association. Herd records were used for reproductive data. Statistical analysis was conducted using generalized multiple linear, Poisson, and Cox's hazard regressions. Treatment effects were evaluated considering cow-level information available at parturition (parity, breed, previous lactation milk yield, previous lactation length, dry period length, gestation length, body condition, and locomotion score at calving, calving ease, and calf sex). In addition, for a subset of cows serum calcium concentration before treatment administration was evaluated (n = 756). Overall, oral calcium supplementation did not affect the evaluated productive and reproductive variables. However, effects conditional to previous lactation length and calving locomotion score were observed. Milk yield and energy-corrected milk yield across the first 3 monthly tests were 1.8 kg/d higher for supplemented cows with a previous lactation length within the fourth quartile, compared with control cows on the same quartile. Energy-corrected milk yield tended to be 1.1 kg/d lower for supplemented cows with a previous lactation length within the first quartile, compared with control counterparts. Peak milk yield tended to be 1.6 kg higher for supplemented cows with a calving locomotion score ≥2, compared with control cows with the same locomotion score. Treatment effects were not conditional to serum calcium concentration before treatment administration. Our results suggest that postpartum oral calcium supplementation effects are conditional to cow-level factors such as previous lactation length and calving locomotion score in multiparous Jersey and Jersey × Holstein crossbreed cows.  相似文献   

20.
The onset of lactation in dairy cows is characterized by severe negative energy and protein balance. Methionine availability during this time for milk production, hepatic lipid metabolism, and immune function may be limiting. Supplementing Met to peripartal diets with adequate Lys in metabolizable protein (MP) to fine-tune the Lys:Met ratio may be beneficial. Fifty-six multiparous Holstein cows were fed the same basal diet from 50 d before expected calving to 30 d in milk. From −50 to −21 d before expected calving, all cows received the same diet [1.24 Mcal/kg of dry matter (DM), 10.3% rumen-degradable protein, and 4% rumen-undegradable protein] with no Met supplementation. From −21 d to expected calving, the cows received diets (1.54 Mcal/kg of DM, 10% rumen-degradable protein, and 5.1% rumen-undegradable protein) with no added Met (control, CON; n = 14), CON plus MetaSmart (MS; Adisseo Inc., Antony, France; n = 12), or CON plus Smartamine M (SM; Adisseo Inc.; n = 12). From calving through 30 d in milk, the cows received the same postpartum diet (1.75 Mcal/kg of DM and 17.5% CP; CON), or the CON plus MS or CON plus SM. The Met supplements were adjusted daily and top-dressed over the total mixed ration at a rate of 0.19 or 0.07% (DM) of feed for MS or SM. Liver tissue was collected on −10, 7, and 21 d, and blood samples more frequently, from −21 through 21 d. Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) with the preplanned contrasts CON versus SM + MS and SM versus MS. No differences in prepartal DM intake (DMI) or body condition score were observed. After calving, body condition score was lower (2.6 vs. 2.8), whereas DMI was greater (15.4 vs. 13.3 kg/d) for Met-supplemented cows. Postpartal diet × time interactions were observed for milk fat percentage, milk fat yield, energy-corrected milk:DMI ratio, and energy balance. These were mainly due to changes among time points across all treatments. Cows supplemented with either Met source increased milk yield, milk protein percentage, energy-corrected milk, and milk fat yield by 3.4 kg/d, 0.18% units, 3.9 kg/d, and 0.18 kg/d, respectively. Those responses were associated with greater postpartum concentration of growth hormone but not insulin-like growth factor 1. There was a diet × time effect for nonesterified fatty acid concentration due to greater values on d 7 for MS; however, liver concentration of triacylglycerol was not affected by diet or diet × time but increased postpartum. Blood neutrophil phagocytosis at 21 d was greater with Met supplementation, suggesting better immune function. Supplemental MS or SM resulted in a tendency for lower incidence of ketosis postpartum. Although supplemental MS or SM did not decrease liver triacylglycerol, it improved milk production-related traits by enhancing voluntary DMI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号