首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kisspeptins are the family of neuropeptide products of the KISS-1 gene that exert the biological action by binding with the G-protein coupled receptor 54 (GPR54), also known as the KISS-1 receptor. The kisspeptin level dramatically increases during pregnancy, and the placenta is supposed to be its primary source. The role of kisspeptin has already been widely studied in hypogonadotropic hypogonadism, fertility, puberty disorders, and insulin resistance-related conditions, including type 2 diabetes mellitus, polycystic ovary syndrome, and obesity. Gestational diabetes mellitus (GDM), preeclampsia (PE), preterm birth, fetal growth restriction (FGR), or spontaneous abortion affected 2 to 20% of pregnancies worldwide. Their occurrence is associated with numerous short and long-term consequences for mothers and newborns; hence, novel, non-invasive predictors of their development are intensively investigated. The study aims to present a comprehensive review emphasizing the role of kisspeptin in the most common pregnancy-related disorders and neonatal outcomes. The decreased level of kisspeptin is observed in women with GDM, FGR, and a high risk of spontaneous abortion. Nevertheless, there are still many inconsistencies in kisspeptin concentration in pregnancies with preterm birth or PE. Further research is needed to determine the usefulness of kisspeptin as an early marker of gestational and neonatal complications.  相似文献   

2.
Globally, cardiovascular disease remains the leading cause of death. Most concerning is the rise in cardiovascular risk factors including obesity, diabetes and hypertension among youth, which increases the likelihood of the development of earlier and more severe cardiovascular disease. While lifestyle factors are involved in these trends, an increasing body of evidence implicates environmental exposures in early life on health outcomes in adulthood. Maternal obesity and diabetes during pregnancy, which have increased dramatically in recent years, also have profound effects on fetal growth and development. Mounting evidence is emerging that maternal obesity and diabetes during pregnancy have lifelong effects on cardiovascular risk factors and heart disease development. However, the mechanisms responsible for these observations are unknown. In this review, we summarize the findings of recent experimental studies, showing that maternal obesity and diabetes during pregnancy affect energy metabolism and heart disease development in the offspring, with a focus on the mechanisms involved. We also evaluate early proof-of-concept studies for interventions that could mitigate maternal obesity and gestational diabetes-induced cardiovascular disease risk in the offspring.  相似文献   

3.
There is a paucity of strong evidence associated with adverse pregnancy outcomes and thrombophilia in pregnancy. These problems include both early (recurrent miscarriage) and late placental vascular-mediated problems (fetal loss, pre-eclampsia, placental abruption and intra-uterine growth restriction). Due to poor quality case-control and cohort study designs, there is often an increase in the relative risk of these complications associated with thrombophilia, particularly recurrent early pregnancy loss, late fetal loss and pre-eclampsia, but the absolute risk remains very small. It appears that low-molecular weight heparin has other benefits on the placental vascular system besides its anticoagulant properties. Its use is in the context of antiphospholipid syndrome and recurrent pregnancy loss and also in women with implantation failure to improve live birth rates. There is currently no role for low-molecular weight heparin to prevent late placental-mediated complications in patients with inherited thrombophilia and this may be due to small patient numbers in the studies involved in summarising the evidence. There is potential for low-molecular weight heparin to improve pregnancy outcomes in women with prior severe vascular complications of pregnancy such as early-onset intra-uterine growth restriction and pre-eclampsia but further high quality randomised controlled trials are required to answer this question.  相似文献   

4.
Type 2 diabetes mellitus (T2DM) and its complications pose a serious threat to the life and health of patients around the world. The most dangerous complications of this disease are vascular complications. Microvascular complications of T2DM include retinopathy, nephropathy, and neuropathy. In turn, macrovascular complications include coronary artery disease, peripheral artery disease, and cerebrovascular disease. The currently used diagnostic methods do not ensure detection of the disease at an early stage, and they also do not predict the risk of developing specific complications. MicroRNAs (miRNAs) are small, endogenous, noncoding molecules that are involved in key processes, such as cell proliferation, differentiation, and apoptosis. Recent research has assigned them an important role as potential biomarkers for detecting complications related to diabetes. We suggest that utilizing miRNAs can be a routine approach for early diagnosis and prognosis of diseases and may enable the development of better therapeutic approaches. In this paper, we conduct a review of the latest reports demonstrating the usefulness of miRNAs as biomarkers in the vascular complications of T2DM.  相似文献   

5.
In humans, the placenta provides the only fetomaternal connection and is essential for establishing a pregnancy as well as fetal well-being. Additionally, it allows maternal physiological adaptation and embryonic immunological acceptance, support, and nutrition. The placenta is derived from extra-embryonic tissues that develop rapidly and dynamically in the first weeks of pregnancy. It is primarily composed of trophoblasts that differentiate into villi, stromal cells, macrophages, and fetal endothelial cells (FEC). Placental differentiation may be closely related to perinatal diseases, including fetal growth retardation (FGR) and hypertensive disorders of pregnancy (HDP), and miscarriage. There are limited findings regarding human chorionic villous differentiation and placental development because conducting in vivo studies is extremely difficult. Placental tissue varies widely among species. Thus, experimental animal findings are difficult to apply to humans. Early villous differentiation is difficult to study due to the small tissue size; however, a detailed analysis can potentially elucidate perinatal disease causes or help develop novel therapies. Artificial induction of early villous differentiation using human embryonic stem (ES) cells/induced pluripotent stem (iPS) cells was attempted, producing normally differentiated villi that can be used for interventional/invasive research. Here, we summarized and correlated early villous differentiation findings and discussed clinical diseases.  相似文献   

6.
We assessed the diagnostic potential of cardiovascular disease-associated microRNAs for the early prediction of gestational diabetes mellitus (GDM) in singleton pregnancies of Caucasian descent in the absence of other pregnancy-related complications. Whole peripheral venous blood samples were collected within 10 to 13 weeks of gestation. This retrospective study involved all pregnancies diagnosed with only GDM (n = 121) and 80 normal term pregnancies selected with regard to equality of sample storage time. Gene expression of 29 microRNAs was assessed using real-time RT-PCR. Upregulation of 11 microRNAs (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-23a-3p, miR-100-5p, miR-125b-5p, miR-126-3p, miR-181a-5p, miR-195-5p, miR-499a-5p, and miR-574-3p) was observed in pregnancies destinated to develop GDM. Combined screening of all 11 dysregulated microRNAs showed the highest accuracy for the early identification of pregnancies destinated to develop GDM. This screening identified 47.93% of GDM pregnancies at a 10.0% false positive rate (FPR). The predictive model for GDM based on aberrant microRNA expression profile was further improved via the implementation of clinical characteristics (maternal age and BMI at early stages of gestation and an infertility treatment by assisted reproductive technology). Following this, 69.17% of GDM pregnancies were identified at a 10.0% FPR. The effective prediction model specifically for severe GDM requiring administration of therapy involved using a combination of these three clinical characteristics and three microRNA biomarkers (miR-20a-5p, miR-20b-5p, and miR-195-5p). This model identified 78.95% of cases at a 10.0% FPR. The effective prediction model for GDM managed by diet only required the involvement of these three clinical characteristics and eight microRNA biomarkers (miR-1-3p, miR-20a-5p, miR-20b-5p, miR-100-5p, miR-125b-5p, miR-195-5p, miR-499a-5p, and miR-574-3p). With this, the model identified 50.50% of GDM pregnancies managed by diet only at a 10.0% FPR. When other clinical variables such as history of miscarriage, the presence of trombophilic gene mutations, positive first-trimester screening for preeclampsia and/or fetal growth restriction by the Fetal Medicine Foundation algorithm, and family history of diabetes mellitus in first-degree relatives were included in the GDM prediction model, the predictive power was further increased at a 10.0% FPR (72.50% GDM in total, 89.47% GDM requiring therapy, and 56.44% GDM managed by diet only). Cardiovascular disease-associated microRNAs represent promising early biomarkers to be implemented into routine first-trimester screening programs with a very good predictive potential for GDM.  相似文献   

7.
Complications of pregnancy represent a significant disease burden, with both immediate and lasting consequences for mother and baby. Two key pregnancy complications, fetal growth restriction (FGR) and preeclampsia (PE), together affect around 10%–15% of all pregnancies worldwide. Despite this high incidence, there are currently no therapies available to treat these pregnancy disorders. Early delivery remains the only intervention to reduce the risk of severe maternal complications and/or stillbirth of the baby; however early delivery itself is associated with increased risk of neonatal mortality and morbidity. As such, there is a pressing need to develop new and effective treatments that can prevent or treat FGR and PE. Animal models have been essential in identifying and screening potential new therapies in this field. In this review, we address recent progress that has been made in developing therapeutic strategies for pregnancy disorders, some of which are now entering clinical trials.  相似文献   

8.
In spite of the huge progress in the treatment of diabetes mellitus, we are still in the situation that both pregestational (PGDM) and gestational diabetes (GDM) impose an additional risk to the embryo, fetus, and course of pregnancy. PGDM may increase the rate of congenital malformations, especially cardiac, nervous system, musculoskeletal system, and limbs. PGDM may interfere with fetal growth, often causing macrosomia, but in the presence of severe maternal complications, especially nephropathy, it may inhibit fetal growth. PGDM may also induce a variety of perinatal complications such as stillbirth and perinatal death, cardiomyopathy, respiratory morbidity, and perinatal asphyxia. GDM that generally develops in the second half of pregnancy induces similar but generally less severe complications. Their severity is higher with earlier onset of GDM and inversely correlated with the degree of glycemic control. Early initiation of GDM might even cause some increase in the rate of congenital malformations. Both PGDM and GDM may cause various motor and behavioral neurodevelopmental problems, including an increased incidence of attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Most complications are reduced in incidence and severity with the improvement in diabetic control. Mechanisms of diabetic-induced damage in pregnancy are related to maternal and fetal hyperglycemia, enhanced oxidative stress, epigenetic changes, and other, less defined, pathogenic mechanisms.  相似文献   

9.
Probiotics are live microorganisms that induce health benefits in the host. Taking probiotics is generally safe and well tolerated by pregnant women and their children. Consumption of probiotics can result in both prophylactic and therapeutic effects. In healthy adult humans, the gut microbiome is stable at the level of the dominant taxa: Bacteroidetes, Firmicutes and Actinobacteria, and has a higher presence of Verrucomicrobia. During pregnancy, an increase in the number of Proteobacteria and Actinobacteria phyla and a decrease in the beneficial species Roseburia intestinalis and Faecalibacterium prausnitzii are observed. Pregnancy is a “window” to the mother’s future health. The aim of this paper is to review studies assessing the potentially beneficial effects of probiotics in preventing the development of diseases that appear during pregnancy, which are currently considered as risk factors for the development of metabolic syndrome, and consequently, reducing the risk of developing maternal metabolic syndrome in the future. The use of probiotics in gestational diabetes mellitus, preeclampsia and excessive gestational weight gain is reviewed. Probiotics are a relatively new intervention that can prevent the development of these disorders during pregnancy, and thus, would reduce the risk of metabolic syndrome resulting from these disorders in the mother’s future.  相似文献   

10.
The aim of the available literature review was to focus on the role of the proinflammatory mediators of AA and LA derivatives in pathological conditions related to reproduction and pregnancy. Arachidonic (AA) and linoleic acid (LA) derivatives play important roles in human fertility and the course of pathological pregnancies. Recent studies have demonstrated that uncontrolled inflammation has a significant impact on reproduction, spermatogenesis, endometriosis, polycystic ovary syndrome (PCOS) genesis, implantation, pregnancy and labor. In addition, cyclooxygenase-mediated prostaglandins and AA metabolite levels are higher in women’s ovarian tissue when suffering from PCOS. It has been demonstrated that abnormal cyclooxygenase-2 (COX-2) levels are associated with ovulation failure, infertility, and implantation disorders and the increase in 9-HODE/13-HODE was a feature recognized in PCOS patients. Maintaining inflammation without neutrophil participation allows pregnant women to tolerate the fetus, while excessive inflammatory activation may lead to miscarriages and other pathological complications in pregnancies. Additionally AA and LA derivatives play an important role in pregnancy pathologies, e.g., gestational diabetes mellitus, preeclampsia (PE), and fetal growth, among others. The pathogenesis of PE and other pathological states in pregnancy involving eicosanoids have not been fully identified. A significant expression of 15-LOX-1,2 was found in women with PE, leading to an increase in the synthesis of AA and LA derivatives, such as hydroxyeicozatetraenoic acids (HETE) and hydroxyoctadecadiene acids (HODE). Synthesis of the metabolites 5-, 8-, 12-, and 15-HETE increased in the placenta, while 20-HETE increased only in umbilical cord blood in women with preeclampsia compared to normal pregnancies. In obese women with gestational diabetes mellitus (GDM) an increase in epoxygenase products in the cytochrome P450 (CYP) and the level of 20-HETE associated with the occurrence of insulin resistance (IR) were found. In addition, 12- and 20-HETE levels were associated with arterial vasoconstriction and epoxyeicosatrienoic acids (EETs) with arterial vasodilatation and uterine relaxation. Furthermore, higher levels of 5- and 15-HETE were associated with premature labor. By analyzing the influence of free fatty acids (FFA) and their derivatives on male reproduction, it was found that an increase in the AA in semen reduces its amount and the ratio of omega-6 to omega-3 fatty acids showed higher values in infertile men compared to the fertile control group. There are several studies on the role of HETE/HODE in relation to male fertility. 15-Hydroperoxyeicosatetraenoic acid may affect the integrity of the membrane and sperm function. Moreover, the incubation of sperm with physiologically low levels of prostaglandins (PGE2/PGF2α) improves the functionality of human sperm. Undoubtedly, these problems are still insufficiently understood and require further research. However, HETE and HODE could serve as predictive and diagnostic biomarkers for pregnancy pathologies (especially in women with risk factors for overweight and obesity). Such knowledge may be helpful in finding new treatment strategies for infertility and the course of high-risk pregnancies.  相似文献   

11.
Gestational diabetes mellitus (GDM) is defined as an impairment of glucose tolerance, manifested by hyperglycemia, which occurs at any stage of pregnancy. GDM is more common in the third trimester of pregnancy and usually disappears after birth. It was hypothesized that the glycemic status of the mother can modulate liver development and growth early during the pregnancy. The simplest modality to monitor the evolution of GDM employs noninvasive techniques. In this category, routinely obstetrical ultrasound (OUS) examinations (simple or 2D/3D) can be employed for specific fetal measurements, such as fetal liver length (FLL) or volume (FLV). FLL and FLV may emerge as possible predictors of GDM as they positively relate to the maternal glycated hemoglobin (HbA1c) levels and to the results of the oral glucose tolerance test. The aim of this review is to offer insight into the relationship between GDM and fetal nutritional status. Risk factors for GDM and the short- and long-term outcomes of GDM pregnancies are also discussed, as well as the significance of different dietary patterns. Moreover, the review aims to fill one gap in the literature, investigating whether fetal liver growth can be used as a predictor of GDM evolution. To conclude, although studies pointed out a connection between fetal indices and GDM as useful tools in the early detection of GDM (before 23 weeks of gestation), additional research is needed to properly manage GDM and offspring health.  相似文献   

12.
Right ventricular (RV) and left ventricular (LV) dysfunction is common in a significant number of hospitalized coronavirus disease 2019 (COVID-19) patients. This study was conducted to assess whether the improved mitochondrial bioenergetics by cardiometabolic drug meldonium can attenuate the development of ventricular dysfunction in experimental RV and LV dysfunction models, which resemble ventricular dysfunction in COVID-19 patients. Effects of meldonium were assessed in rats with pulmonary hypertension-induced RV failure and in mice with inflammation-induced LV dysfunction. Rats with RV failure showed decreased RV fractional area change (RVFAC) and hypertrophy. Treatment with meldonium attenuated the development of RV hypertrophy and increased RVFAC by 50%. Mice with inflammation-induced LV dysfunction had decreased LV ejection fraction (LVEF) by 30%. Treatment with meldonium prevented the decrease in LVEF. A decrease in the mitochondrial fatty acid oxidation with a concomitant increase in pyruvate metabolism was noted in the cardiac fibers of the rats and mice with RV and LV failure, respectively. Meldonium treatment in both models restored mitochondrial bioenergetics. The results show that meldonium treatment prevents the development of RV and LV systolic dysfunction by enhancing mitochondrial function in experimental models of ventricular dysfunction that resembles cardiovascular complications in COVID-19 patients.  相似文献   

13.
BPA is one of the most common endocrine disruptors that is widely being manufactured daily nationwide. Although scientific evidence supports claims of negative effects of BPA on humans, there is also evidence suggesting that a low level of BPA is safe. However, numerous in vivo trials contraindicate with this claim and there is a high possibility of BPA exposure could lead to obesity. It has been speculated that this does not stop with the exposed subjects only, but may also cause transgenerational effects. Direct disruption of endocrine regulation, neuroimmune and signaling pathways, as well as gut microbiata, has been identified to be interrupted by BPA exposure, leading to overweight or obesity. In these instances, cardiovascular complications are one of the primary notable clinical signs. In regard to this claim, this review paper discusses the role of BPA on obesity in the perspective of endocrine disruptions and possible cardiovascular complications that may arise due to BPA. Thus, the aim of this review is to outline the changes in gut microbiota and neuroimmune or signaling mechanisms involved in obesity in relation to BPA. To identify potentially relevant articles, a depth search was done on the databases Nature, PubMed, Wiley Online Library, and Medline & Ovid from the past 5 years. According to Boolean operator guideline, selected keywords such as (1) BPA OR environmental chemical AND fat OR LDL OR obese AND transgenerational effects or phenocopy (2) Endocrine disruptors OR chemical AND lipodystrophy AND phenocopy (3) Lipid profile OR weight changes AND cardiovascular effect (4) BPA AND neuroimmune OR gene signaling, were used as search terms. Upon screening, 11 articles were finalized to be further reviewed and data extraction tables containing information on (1) the type of animal model (2) duration and dosage of BPA exposure (3) changes in the lipid profile or weight (4) genes, signaling mechanism, or any neuroimmune signal involved, and (5) transgenerational effects were created. In toto, the study indicates there are high chances of BPA exposure affecting lipid profile and gene associated with lipolysis, leading to obesity. Therefore, this scoping review recapitulates the possible effects of BPA that may lead to obesity with the evidence of current in vivo trials. The biomarkers, safety concerns, recommended dosage, and the impact of COVID-19 on BPA are also briefly described.  相似文献   

14.
The mammalian high temperature requirement A (HtrA) proteins are a family of evolutionarily conserved serine proteases, consisting of four homologs (HtrA1-4) that are involved in many cellular processes such as growth, unfolded protein stress response and programmed cell death. In humans, while HtrA1, 2 and 3 are widely expressed in multiple tissues with variable levels, HtrA4 expression is largely restricted to the placenta with the protein released into maternal circulation during pregnancy. This limited expression sets HtrA4 apart from the rest of the family. All four HtrAs are active proteases, and their specific cellular and physiological roles depend on tissue type. The dysregulation of HtrAs has been implicated in many human diseases such as cancer, arthritis, neurogenerative ailments and reproductive disorders. This review first discusses HtrAs broadly and then focuses on the current knowledge of key molecular characteristics of individual human HtrAs, their similarities and differences and their reported physiological functions. HtrAs in other species are also briefly mentioned in the context of understanding the human HtrAs. It then reviews the distinctive involvement of each HtrA in various human diseases, especially cancer and pregnancy complications. It is noteworthy that HtrA4 expression has not yet been reported in any primary tumour samples, suggesting an unlikely involvement of this HtrA in cancer. Collectively, we accentuate that a better understanding of tissue-specific regulation and distinctive physiological and pathological roles of each HtrA will improve our knowledge of many processes that are critical for human health.  相似文献   

15.
Understanding pathophysiology and identifying mothers at risk of major pregnancy complications is vital to effective prevention and optimal management. However, in current antenatal care, understanding of pathophysiology of complications is limited. In gestational diabetes mellitus (GDM), risk prediction is mostly based on maternal history and clinical risk factors and may not optimally identify high risk pregnancies. Hence, universal screening is widely recommended. Here, we will explore the literature on GDM and biomarkers including inflammatory markers, adipokines, endothelial function and lipids to advance understanding of pathophysiology and explore risk prediction, with a goal to guide prevention and treatment of GDM.  相似文献   

16.
17.
The incidence and prevalence of diabetes are increasing worldwide, and cardiovascular disease (CVD) is the leading cause of death among subjects with type 2 diabetes (T2D). The assessment and stratification of cardiovascular risk in subjects with T2D is a challenge. Advanced glycation end products are heterogeneous molecules produced by non-enzymatic glycation of proteins, lipids, or nucleic acids. Accumulation of advanced glycation end products is increased in subjects with T2D and is considered to be one of the major pathogenic mechanism in developing complications in diabetes. Skin AGEs could be assessed by skin autofluorescence. This method has been validated and related to the presence of micro and macroangiopathy in individuals with type 2 diabetes. In this context, the aim of this review is to critically summarize current knowledge and scientific evidence on the relationship between skin AGEs and CVD in subjects with type 2 diabetes, with a brief reference to other diabetes-related complications.  相似文献   

18.
The placenta is an endocrine fetal organ, which secretes a plethora of steroid- and proteo-hormones, metabolic proteins, growth factors, and cytokines in order to adapt maternal physiology to pregnancy. Central to the growth of the fetus is the supply with nutrients, foremost with glucose. Therefore, during pregnancy, maternal insulin resistance arises, which elevates maternal blood glucose levels, and consequently ensures an adequate glucose supply for the developing fetus. At the same time, maternal β-cell mass and function increase to compensate for the higher insulin demand. These adaptations are also regulated by the endocrine function of the placenta. Excessive insulin resistance or the inability to increase insulin production accordingly disrupts physiological modulation of pregnancy mediated glucose metabolism and may cause maternal gestational diabetes (GDM). A growing body of evidence suggests that this adaptation of maternal glucose metabolism differs between pregnancies carrying a girl vs. pregnancies carrying a boy. Moreover, the risk of developing GDM differs depending on the sex of the fetus. Sex differences in placenta derived hormones and bioactive proteins, which adapt and modulate maternal glucose metabolism, are likely to contribute to this sexual dimorphism. This review provides an overview on the adaptation and maladaptation of maternal glucose metabolism by placenta-derived factors, and highlights sex differences in this regulatory network.  相似文献   

19.
Gestational diabetes mellitus (GDM) increases risk of adverse pregnancy outcomes and maternal cardiovascular complications. It is widely believed that maternal endothelial dysfunction is a critical determinant of these risks, however, connections to maternal cardiac dysfunction and mechanisms of pathogenesis are unclear. Circulating extracellular vesicles (EVs) are emerging biomarkers that may provide insights into the pathogenesis of GDM. We examined the impact of GDM on maternal cardiac and vascular health in a rat model of diet-induced obesity-associated GDM. We observed a >3-fold increase in circulating levels of endothelial EVs (p < 0.01) and von Willebrand factor (p < 0.001) in GDM rats. A significant increase in mitochondrial DNA (mtDNA) within circulating extracellular vesicles was also observed suggesting possible mitochondrial dysfunction in the vasculature. This was supported by nicotinamide adenine dinucleotide deficiency in aortas of GDM mice. GDM was also associated with cardiac remodeling (increased LV mass) and a marked impairment in maternal diastolic function (increased isovolumetric relaxation time [IVRT], p < 0.01). Finally, we observed a strong positive correlation between endothelial EV levels and IVRT (r = 0.57, p < 0.05). In summary, we observed maternal vascular and cardiac dysfunction in rodent GDM accompanied by increased circulating endothelial EVs and EV-associated mitochondrial DNA. Our study highlights a novel method for assessment of vascular injury in GDM and highlights vascular mitochondrial injury as a possible therapeutic target.  相似文献   

20.
An increase in the rates of morbidity and mortality associated with diabetic complications is a global concern. Glycemic control is important to prevent the development and progression of diabetic complications. Various classes of anti-diabetic agents are currently available, and their pleiotropic effects on diabetic complications have been investigated. Incretin-based therapies such as dipeptidyl peptidase (DPP)-4 inhibitors and glucagon-like peptide-1 receptor agonists (GLP-1RA) are now widely used in the treatment of patients with type 2 diabetes. A series of experimental studies showed that incretin-based therapies have beneficial effects on diabetic complications, independent of their glucose-lowering abilities, which are mediated by anti-inflammatory and anti-oxidative stress properties. Based on these findings, clinical studies to assess the effects of DPP-4 inhibitors and GLP-1RA on diabetic microvascular and macrovascular complications have been performed. Several but not all studies have provided evidence to support the beneficial effects of incretin-based therapies on diabetic complications in patients with type 2 diabetes. We herein discuss the experimental and clinical evidence of incretin-based therapy for diabetic complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号