首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Improving feed utilization efficiency in dairy cattle could have positive economic and environmental effects that would support the sustainability of the dairy industry. Identifying key differences in metabolism between high and low feed-efficient animals is vital to enhancing feed conversion efficiency. Therefore, our objectives were (1) to determine whether cows grouped by either high or low feed efficiency have measurable differences in net fat and carbohydrate metabolism that account for differences in heat production (HP), and if so, whether these differences also exists under conditions of feed withdrawal when the effect of feeding on HP is minimized, and (2) to determine whether the abundance of mitochondria in the liver can be related to the high or low feed-efficient groups. Ten dairy cows from a herd of 15 (parity = 2) were retrospectively grouped into either a high (H) or a low (L) feed-efficient group (n = 5 per group) based on weekly energy-corrected milk (ECM) divided by dry mater intake (DMI) from wk 4 through 30 of lactation. Livers were biopsied at wk ?4, 2, and 12, and blood was sampled weekly from wk ?3 to 12 relative to parturition. Blood was subset to be analyzed for the transition period (wk ?3 to 3) and from wk 4 to 12. In wk 5.70 ± 0.82 (mean ± SD) postpartum (PP), cows spent 2 d in respiration chambers (RC), in which CO2, O2, and CH4 gases were measured every 6 min for 24 h. Fatty acid oxidation (FOX), carbohydrate oxidation (COX), metabolic respiratory quotient (RQ), and HP were calculated from gas measurements for 23 h. Cows were fed ad libitum (AD-LIB) on d 1 and had feed withdrawn (RES, restricted diet) on d 2. Additional blood samples were taken at the end of the AD-LIB and RES feeding periods in the RC. During wk 4 to 30 PP, H had greater DMI/kg of metabolic body weight (BW0.75), ECM per kilogram of BW0.75 yield, and ECM/DMI ratio, compared with L, but a lower body condition score between wk 4 and 12 PP. In the RC period, we detected no differences in BW, DMI, or milk yield between groups. We also detected no significant group or group by feeding period interactions for plasma metabolites except for Revised Quantitative Insulin Sensitivity Check Index, which tended to have a group by feeding period interaction. The H group had lower HP and HP per kilogram of BW0.75 compared with L. Additionally, H had lower FOX and FOX per kilogram of BW0.75 compared with L during the AD-LIB period. Methane, CH4 per kilogram of BW0.75, and CH4 per kilogram of milk yield were lower in H compared with L, but, when adjusted for DMI, CH4/DMI did not differ between groups, nor did HP/DMI. Relative mitochondrial DNA copy numbers in the liver were lower in the L than in the H group. These results suggest that lower feed efficiency in dairy cows may result from fewer mitochondria per liver cell as well as a greater whole-body HP, which likely partially results from higher net fat oxidation.  相似文献   

2.
《Journal of dairy science》2021,104(9):9726-9734
Maintenance energy is the energy required to conserve the state of an animal when no work is completed. Dietary energy must be supplied to meet maintenance requirements before milk can be produced. The objectives of the current experiment were to quantify the maintenance energy requirement of Jersey cows when lactating or dry. Energetic measures were collected on 8 Jersey cows and evaluated across 3 physiological phases and nutritional planes: lactation, dry cows fed at maintenance, and fasted dry cows. Through total collection of feces and urine as well as using headbox-style indirect calorimeters, energy balance and heat production data were measured across all phases. Lactation data were collected across four 28-d periods. Data for cows fed at maintenance were collected after 14 d and fasting heat production was measured during the last 24 h of a 96-h fast. Net energy for maintenance (NEM) requirements, and the efficiency of converting metabolizable energy (ME) into net energy were compared between lactating and dry (maintenance or fasting phase) cows. Heat production of dry cows fed at maintenance, which represents ME for maintenance, was 0.146 ± 0.0087 Mcal per unit of metabolic body weight (BW0.75, MBW). Fasting heat production, which represents NEM, was 0.102 ± 0.0071 Mcal/MBW. Energy balance was calculated as tissue energy plus milk energy. When estimated via regressing energy balance on ME intake, NEM was not different between dry and lactating cows (0.120 ± 0.32 vs. 0.103 ± 0.0052 Mcal/MBW). However, the slope of the regression of energy balance on ME intake was greater for dry compared with lactating cows (0.714 ± 0.046 vs. 0.685 ± 0.010) when evaluated with a fixed intercept. This suggests that dry cows were more efficient at converting ME into net energy and that the efficiency of utilizing ME for maintenance may be greater than for lactation. Our measurements of NEM and the slope of ME on energy balance were greater than the value used by the National Research Council (2001), which are 0.080 Mcal/MBW for NEM and approximately 0.64 for the slope. Results of this study suggest that NEM and the efficiency of converting ME into NEM of modern lactating Jersey cows are similar to recent measurements on modern Holstein cows and greater than previous measurements.  相似文献   

3.
During the transition period, the lipid metabolism of dairy cows is markedly affected by energy status. Fatty liver is one of the main health disorders after parturition. The aim of this study was to evaluate the effects of a negative energy balance (NEB) at 2 stages in lactation [NEB at the onset of lactation postpartum (p.p.) and a deliberately induced NEB by feed restriction near 100 d in milk] on liver triglyceride content and parameters of lipid metabolism in plasma and liver based on mRNA abundance of associated genes. Fifty multiparous dairy cows were studied from wk 3 antepartum to approximately wk 17 p.p. in 2 periods. According to their energy balance in period 1 (parturition to wk 12 p.p.), cows were allocated to a control (CON; n = 25) or a restriction group (RES; 70% of energy requirements; n = 25) for 3 wk in mid lactation starting at around 100 d in milk (period 2). Liver triglyceride (TG) content, plasma nonesterified fatty acids (NEFA), and β-hydroxybutyrate were highest in wk 1 p.p. and decreased thereafter. During period 2, feed restriction did not affect liver TG and β-hydroxybutyrate concentration, whereas NEFA concentration was increased in RES cows as compared with CON cows. Hepatic mRNA abundances of tumor necrosis factor α, ATP citrate lyase, mitochondrial glycerol-3-phosphate acyltransferase, and glycerol-3-phosphate dehydrogenase 2 were not altered by lactational and energy status during both experimental periods. The expression of fatty acid synthase was higher in period 2 compared with period 1, but did not differ between RES and CON groups. The mRNA abundance of acetyl-coenzyme A-carboxylase showed a tendency toward higher expression during period 2 compared with period 1. The solute carrier family 27 (fatty acid transporter), member 1 (SLC27A1) was upregulated in wk 1 p.p. and also during feed restriction in RES cows. In conclusion, the present study shows that a NEB has different effects on hepatic lipid metabolism and TG concentration in the liver of dairy cows at early and later lactation. Therefore, the homeorhetic adaptations during the periparturient period trigger excessive responses in metabolism, whereas during the homeostatic control of endocrine and metabolic systems after established lactation, as during the period of feed restriction in the present study, organs are well adapted to metabolic and environmental changes.  相似文献   

4.
After parturition, the start of copious milk production in dairy cows requires the closure of tight junctions (TJ) to form the blood–milk barrier and prevent paracellular transfer of blood constituents into milk [e.g., lactate dehydrogenase (LDH) and serum albumin (SA)] and vice versa [e.g., appearance of α-lactalbumin (α-LA) in blood]. Serotonin (5-HT) has been demonstrated to alter tight junction permeability in the mammary gland. The present study investigated individual differences of TJ permeability of mammary epithelium at the beginning of lactation in relation to circulating 5-HT in dairy cows. Blood and milk samples were obtained from 11 multiparous Holstein dairy cows for the first time at 4 h after parturition, at the following 5 milkings, and at the evening milkings on d 5, 8, 10, and 14 of lactation. Retrospectively, cows were split into 2 groups according to their calculated areas under the curve of serum 5-HT during the entire experimental period: a high-serum 5-HT (HSS) group (5 cows) and a low-serum 5-HT (LSS) group (6 cows). The areas under the curve of serum 5-HT concentrations over the 324-h experimental period were 62 ± 2 × 103 ng/mL in HSS and 25 ± 5 × 103 ng/mL in LSS. Plasma α-LA concentration was greater in LSS than in HSS cows at the first milking, but no difference between groups was found from the second to sixth milking. Yield of α-LA in milk was lower in HSS than in LSS during the first 6 milkings postpartum, especially in colostrum. Concentrations of α-LA, IgG1, and IgG2 in milk did not differ between groups during the entire experiment except for higher IgG observed in LSS than in HSS at the second milking and for higher IgG2 found in HSS compared with LSS on d 5. In contrast, SA concentrations and LDH activity in milk were lower in LSS compared with HSS cows during the first 6 milkings postpartum, particularly in colostrum. Milk somatic cell count was higher in HSS than in LSS throughout the study. Higher circulating 5-HT concentrations were associated with an increased transfer of the paracellularly transported SA, LDH, and somatic cell count, especially at the first milking, suggesting that 5-HT affects TJ permeability during closure of the blood–milk barrier at the onset of lactation. Furthermore, higher serum 5-HT concentrations were associated with a lower α-LA yield in milk. A consistent relationship with serum 5-HT concentrations was neither observed for the transfer of IgG2 nor the primarily transcellular transport of IgG1 during the first milkings after parturition.  相似文献   

5.
《Journal of dairy science》2021,104(9):9886-9901
An experiment was conducted to determine the effects of low and high metabolizable protein (MP) diets when fed for ad libitum and controlled intake during the prepartum period on postpartum lactation performance and feeding behavior of dairy cows. Thirty-six multiparous Holstein cows were blocked by parity, expected calving date, and previous lactation milk yield at −21 d relative to expected calving and were randomly assigned to 1 of 4 close-up period dietary treatments providing low MP (LMP) or high MP (HMP) diets with controlled intake (CNI) or ad libitum intake (ALI). The concentrations of MP were 65 and 90 g/kg dry matter for LMP and HMP diets, respectively, whereas intake was controlled to supply 100 and 160% of the NRC (2001) energy requirements for CNI and ALI groups, respectively. The concentration of net energy for lactation (NEL) in the treatment diets was 1.50 Mcal/kg. All cows were fed a similar lactation diet after calving (1.50 Mcal/kg of NEL and 83.3 g/kg of MP). The HMP diet increased dry matter intake during the first 3 wk and tended to increase dry matter intake over the 9 wk of lactation. Meal size and eating rate increased in the ALI cows during the prepartum period. Meal frequency increased with the HMP diet during the postpartum period. Milk yield increased by 15.2% with the HMP diet over the 9 wk of lactation. The HMP diet increased energy-corrected milk (ECM) yield in CNI versus ALI cows, whereas the LMP diet increased ECM yield in ALI versus CNI cows over the 9 wk of lactation. The increase in ECM yield of LMP-ALI versus LMP-CNI cows was supported by greater body condition loss and serum β-hydroxybutyrate over the 9 wk of lactation. Taken together, these data indicate that prepartum controlled intake of a high protein diet can provide the benefits of both strategies.  相似文献   

6.
Free fatty acid receptors (FFAR) play significant roles in various physiological processes, including energy metabolism, through interaction with their ligands, fatty acids. To determine whether the receptors FFAR1 and FFAR2 are involved in the regulation of liver metabolism during the peripartal period, we selected 13 German Holstein multiparous dairy cows and grouped them as high β-hydroxybutyrate (H-BHB; n = 8) or low β-hydroxybutyrate (L-BHB; n = 5) according to their individual maximum plasma BHB concentration observed within wk 2 or 3 postpartum (H-BHB: >1 mmol/L and L-BHB: <0.77 mmol/L). The selected cows had a milk yield of more than 10,000 kg/305 d during a previous lactation. The cows were fed a total mixed ration according to their requirements during the far-off dry period [5.9 MJ of net energy for lactation (NEL)/kg of dry matter (DM), crude protein (CP) 126 g/kg of DM], close-up dry period (6.5 MJ of NEL/kg of DM, CP 137 g/kg of DM), and lactation (7 MJ of NEL/kg of DM, CP 163 g/kg of DM). Blood samples were taken weekly, from d ?34 to d 40 relative to parturition. Liver biopsies were taken on d ?34, ?17, 3, 18, and 30 relative to parturition and at slaughter (d 40). The protein abundance of FFAR1 was lower during the whole peripartal period in the H-BHB group. The abundance of FFAR2 increased over time and tended to be higher in H-BHB cows. The abundance of FFAR1 might be associated with imbalances of liver metabolism in peripartal dairy cows.  相似文献   

7.
《Journal of dairy science》2019,102(12):10903-10915
This study evaluated the effects of feeding diets that were formulated to contain similar proportions of undigested neutral detergent fiber (uNDF) from forage, with wheat straw (WS) substituted for corn silage (CS), alfalfa hay (AH), or both. The diets were fed to lactating dairy cows and intake, digestibility, blood metabolites, and milk production were examined. Thirty-two multiparous Holstein cows (body weight = 642 ± 50 kg; days in milk = 78 ± 11 d; milk production = 56 ± 6 kg/d; mean ± standard deviation) were used in a randomized block design with 6-wk periods after a 10-d covariate period. Each period consisted of 14 d of adaptation followed by 28 d of data collection. The control diet contained CS and AH as forage sources (CSAH) with 17% of dietary dry matter as uNDF after 30 h of incubation (uNDF30). Wheat straw was substituted for AH (WSCS), CS (WSAH), or both (WSCSAH) on an uNDF30 basis, and beet pulp was used to obtain similar concentrations of NDF digestibility after 30 h of incubation (NDFD30 = 44.5% of NDF) across all diets. The 4 diets also contained similar concentrations of net energy for lactation and metabolizable protein. Dry matter intake was greatest for WSCS (27.8 kg/d), followed by CSAH (25.7 kg/d), WSCSAH (25.2 kg/d), and WSAH (24.2 kg/d). However, yields of milk, 3.5% fat-corrected milk (FCM), and energy-corrected milk did not differ, resulting in higher FCM efficiency (kg of FCM yield/kg of dry matter intake) for WSAH (1.83) and WSCSAH (1.79), followed by CSAH (1.69) and WSCS (1.64). Milk protein percentage was greater for CSAH (2.84%) and WSCS (2.83%) than for WSAH (2.78%), and WSCSAH (2.81%) was intermediate. The opposite trend was observed for milk urea nitrogen, which was lower for CSAH (15.8 mg/dL), WSCS (15.8 mg/dL), and WSCSAH (17.0 mg/dL) than for WSAH (20 mg/dL). Total-tract NDF digestibility and ruminal pH were greater for diets containing WS than the diet without WS (CSAH), but digestibility of other nutrients was not affected by dietary treatments. Cows fed WSAH had less body reserves (body weight change = −13.5 kg/period) than the cows fed the other diets, whereas energy balance was greatest for those fed WSCS. The results showed that feeding high-producing dairy cows diets containing different forage sources but formulated to supply similar concentrations of uNDF30 while maintaining NDFD30, net energy for lactation, and metabolizable protein constant did not influence milk production. However, a combination of WS and CS (WSCS diet) compared with a diet with CS and AH improved feed intake, ruminal pH, total-tract NDF digestibility, and energy balance of dairy cows.  相似文献   

8.
《Journal of dairy science》2019,102(12):11597-11608
Dairy cows cope with severe energy insufficiency in early lactation by engaging in intense and sustained mobilization of fatty acids from adipose tissue. An unwanted side effect of this adaptation is excessive lipid accumulation in the liver, which in turn impairs hepatic functions. Mice experiencing increased hepatic fatty acid flux are protected from this condition through coordinated actions of the newly described hormone fibroblast growth factor-21 (FGF21) on liver and adipose tissue. The possibility of an analogous role for FGF21 in dairy cows is suggested by its rapid increase in plasma levels around parturition followed by chronically elevated levels in the first few weeks of lactation. To test this hypothesis, dairy cows were randomly assigned on d 12.6 ± 2.2 (± standard error) of lactation to receive either an excipient (control; n = 6) or recombinant human FGF21 (n = 7), first as an FGF21 bolus of 3 mg/kg of body weight (BW) followed 2 d later by a constant i.v. infusion of FGF21 at a rate of 6.3 mg/kg of metabolic BW for 9 consecutive days. After bolus administration, human FGF21 circulated with a half-life of 194 min, and its constant infusion increased total plasma concentration 117-fold over levels in excipient-infused cows. The FGF21 treatment had no effect on voluntary feed intake, milk yield, milk energy output, or net energy balance measured over the 9-d infusion or on final BW. Plasma fatty acids circulated at lower concentrations in the FGF21 group than in the control group for the 8-h period following bolus administration, but this reduction was not significant during the period of constant i.v. infusion. Treatment with FGF21 caused a 50% reduction in triglyceride content in liver biopsies taken at the end of the constant i.v. infusion without altering the mRNA abundance of key genes involved in the transport, acyl coenzyme A activation, or oxidation of fatty acids. In contrast, FGF21 treatment ablated the recovery of plasma insulin-like growth factor-1 seen in control cows during the 9-d i.v. infusion period despite a tendency for higher plasma growth hormone. This effect was associated with increased hepatic mRNA abundance of the intracellular inhibitor of growth hormone receptor trafficking, LEPROT. Overall, these data confirm the ability of FGF21 to reduce lipid accumulation in bovine liver and suggest the possibility that FGF21 does so by attenuating the hepatic influx of adipose tissue-derived fatty acids.  相似文献   

9.
The current study was conducted to investigate the effects of dietary supplementation of biotin, intramuscular injections of vitamin B12 (VB12), or both beginning at the prepartum period on feed intake and lactation performance in postpartum dairy cows. Forty-eight dairy cows were allocated into 12 blocks, based on parity and milk yield of the previous lactation cycle, and randomly assigned to 1 of 4 treatments. Supplementation of VB12 (weekly intramuscular injections of 0 or 10 mg) and biotin (dietary supplements of 0 or 30 mg/d) were used in a 2 × 2 factorial arrangement in a randomized complete block design of 12 blocks with repeated measures. The study started at 3 wk before the expected calving date and ended at 8 wk after calving. Feed intake and lactation performance (milk yield and composition) were recorded weekly after calving. Blood variables were measured on d ?10, 0, 8, 15, 29, 43, and 57 relative to calving. When VB12 was given, the cows had greater feed intake, better lactation performance and lower body weight loss in the postpartum period compared with animals without injection of VB12. The VB12-injected cows had lower plasma nonesterified fatty acids and β-hydroxybutyrate concentrations but higher plasma superoxide dismutase activity compared with cows without VB12. Cows fed a biotin supplement had higher milk protein yield (6 and 8 wk) and lactose yield (6–8 wk), compared with animals without biotin. However, under the present experimental conditions, we found no additive effect of a combined supplement of biotin and vitamin B12 on lactation performance of dairy cows.  相似文献   

10.
An experiment was conducted to determine the effect of plane of energy intake prepartum on postpartum performance. Primiparous (n = 24) and multiparous (n = 23) Holsteins were randomly assigned by expected date of parturition to 1 of 3 prepartum energy intakes. A moderate energy diet [1.63 Mcal of net energy for lactation (NEL)/kg; 15% crude protein (CP)] was fed for either ad libitum intake (OVR) or restricted intake (RES) to supply 150 or 80% of National Research Council (2001) energy requirement, respectively, for dry cows in late gestation. To limit energy intake to 100% of NRC requirement at ad libitum dry matter intake (DMI), chopped wheat straw was included as 31.8% of dry matter (DM) in a control diet (CON; 1.21 Mcal of NEL/kg of DM; 14% CP). Multiparous and primiparous cows assigned to OVR gained body condition during the dry period [initial body condition score (BCS) = 3.3], but were not overconditioned by parturition (BCS = 3.5). Multiparous cows in the OVR group lost more BCS postpartum than multiparous RES or CON cows. Primiparous cows lost similar amounts of BCS among dietary treatment groups postpartum. Addition of chopped wheat straw to CON diets prevented a large decrease in DMI prepartum in both primiparous and multiparous cows. During the first 3 wk postpartum, DMI as a percentage of BW was lower for multiparous OVR cows than for multiparous RES cows. Prepartum diet effects did not carry over through the entire 8-wk lactation period. Because of greater mobilization of body stores, OVR cows had greater milk fat percentage and greater 3.5% fat-corrected milk yield during the first 3 wk postpartum. Multiparous cows assigned to OVR experienced a 55% decrease in energy balance and primiparous cows a 40% decrease in energy balance during the last 3 wk before parturition, compared with CON or RES cows that had little change. Multiparous cows fed OVR had a greater contribution of energy from body energy reserves to milk energy output than either CON or RES cows. Overfeeding energy prepartum resulted in large changes in periparturient energy balance. Even in the absence of overconditioning, a large change in DMI and energy balance prepartum influenced postpartum DMI and BCS loss, especially for multiparous cows. Chopped wheat straw was effective at controlling energy intake prepartum, although primiparous cows did not achieve predicted DMI. Even so, controlling or restricting energy intake in primiparous cows was not detrimental to lactational performance over the first 8 wk of lactation.  相似文献   

11.
An experiment was conducted to determine the effect of prepartum plane of energy intake on metabolic profiles related to lipid metabolism and health in blood and liver. Primiparous (n = 24) and multiparous (n = 23) Holsteins were randomly assigned by expected date of parturition to 1 of 3 prepartum energy intakes. A high energy diet [1.62 Mcal of net energy for lactation (NEL)/kg; 15% crude protein] was fed for either ad libitum intake or restricted intake to supply 150% (OVR) or 80% (RES) of energy requirements for dry cows in late gestation. To limit energy intake to 100% of National Research Council requirements at ad libitum intake, chopped wheat straw was included as 31.8% of dry matter for a control diet (CON; 1.21 Mcal of NEL/kg of dry matter; 14.2% crude protein). Regardless of parity group, OVR cows had greater concentrations of glucose, insulin, and leptin in blood prepartum compared with either CON or RES cows; however, dietary effects did not carry over to the postpartum period. Prepartum nonesterified fatty acids (NEFA) were lower in OVR cows compared with either CON or RES cows. Postpartum, however, OVR cows had evidence of greater mobilization of triacylglycerol (TAG) from adipose tissue as NEFA were higher than in CON or RES cows, especially within the first 10 d postpartum. Prepartum β-hydroxybutyrate (BHBA) was not affected by diet before parturition; however, within the first 10 d postpartum, OVR cows had greater BHBA than CON or RES cows. Prepartum diet did not affect liver composition prepartum; however, OVR cows had greater total lipid and TAG concentrations and lower glycogen postpartum than CON or RES cows. Frequency of ketosis and displaced abomasum was greater for OVR cows compared with CON or RES cows postpartum. Controlling or restricting prepartum energy intake yielded metabolic results that were strikingly similar both prepartum and postpartum, independent of parity group. The use of a bulky diet controlled prepartum energy intake in multiparous and primiparous cows, improved metabolic status postpartum, and reduced the incidence of health problems. When metabolic profiles are considered collectively, cows overfed energy prepartum exhibited an “overnutrition syndrome” with characteristics of clinical symptoms displayed by diabetic or obese nonruminant subjects. This syndrome likely contributed to metabolic dysfunction postpartum.  相似文献   

12.
Extensive efforts have been made to identify more feed-efficient dairy cows, yet it is unclear how selection for feed efficiency will influence metabolic health. The objectives of this research were to determine the relationships between residual feed intake (RFI), a measure of feed efficiency, body condition score (BCS) change, and hyperketonemia (HYK) incidence. Blood and milk samples were collected twice weekly from cows 5 to 18 d postcalving for a total of 4 samples. Hyperketonemia was diagnosed at a blood β-hydroxybutyrate (BHB) ≥1.2 mmol/L and cows were treated upon diagnosis. Dry period, calving, and final blood sampling BCS was recorded. Prior mid-lactation production, body weight, body weight change, and dry matter intake (DMI) data were used to determine RFI phenotype, calculated as the difference between observed DMI and predicted DMI. The maximum BHB concentration (BHBmax) for each cow was used to group cows into HYK or not hyperketonemic. Lactation number, BCS, and RFI data were analyzed with linear and quadratic orthogonal contrasts. Of the 570 cows sampled, 19.7% were diagnosed with HYK. The first positive HYK test occurred at 9 ± 0.9 d postpartum and the average BHB concentration at the first positive HYK test was 1.53 ± 0.14 mmol/L. In the first 30 d postpartum, HYK-positive cows had increased milk yield and fat concentration, decreased milk protein concentration, and decreased somatic cell count. Cows with a dry BCS ≥4.0, or that lost 1 or more BCS unit across the transition to lactation period, had greater BHBmax than cows with lower BCS. Prior-lactation RFI did not alter BHBmax. Avoiding over conditioning of dry cows and subsequent excessive fat mobilization during the transition period may decrease HYK incidence; however, RFI during a prior lactation does not appear to be associated with HYK onset.  相似文献   

13.
《Journal of dairy science》2022,105(7):5796-5812
Our objective was to determine the effects of feeding 25-hydroxyvitamin D3 [25(OH)D3], or vitamin D3 (cholecalciferol) on plasma, mineral, and metabolite concentrations, mineral balance, mineral excretion, rumination, energy balance, and milk production of dairy cows. We hypothesized that supplementing 3 mg/d of 25(OH)D3 during the prepartum period would be more effective than supplementing vitamin D3 at the National Research Council (2001) levels to minimize calcium imbalance during the transition period and improve milk production of dairy cows. Forty multiparous, pregnant nonlactating-Holstein cows were enrolled in this study. Body weight, body condition score, parity, and milk yield in the previous lactation (mean ± standard deviation) were 661 ± 59.2, 3.46 ± 0.35, 1.79 ± 0.87, and 33.2 ± 6.43 kg/d, respectively. Cows were enrolled into the blocks (n = 20 for each treatment) at 30 d of the expected day of calving to receive an acidogenic diet (373 g/kg of neutral detergent fiber and 136 g/kg of crude protein, dry matter basis; ?110 mEq/kg) associated with the treatments: (1) control (CTRL), vitamin D3 at 0.625 mg/d (equivalent to 25,000 IU of vitamin D3/d) or (2) 25(OH)D3 at 3 mg/d (equivalent to 120,000 IU of vitamin D3/d). All cows were fed with the base ration for 49 d after calving. Blood samples were taken on d 7, 0, 1, 2, 21, and 42, relative to calving. No effect of treatment was observed for prepartum dry matter intake or body condition score. A trend for increase of ionized Ca was observed for the cows fed 25(OH)D3, compared with the CTRL, but no effect of treatment was detected for total Ca or total P. Feeding 25(OH)D3 increased colostrum yield. The plasmatic concentration of 25-hydroxyvitamin D3 was increased with 25(OH)D3 supplementation. 25-Hydroxyvitamin D3 supplementation increased plasma glucose concentration at parturition. The postpartum dry matter intake was not influenced by treatments. Feeding 25(OH)D3 increases milk yield, 3.5% fat-corrected milk, and energy-corrected milk and improves milk yield components in early lactation. Overall, these findings suggest that 25(OH)D3 at 3 mg/d can improve the energy metabolism and lactation performance, compared with the current-feeding practice of supplementing vitamin D3 at 0.625 mg/d.  相似文献   

14.
This experiment evaluated the reproductive performance, herd exit dynamics, and lactation performance of dairy cows managed with a voluntary waiting period (VWP) of 60 or 88 d. Secondary objectives were evaluating VWP effect on cyclicity status, uterine health, systemic inflammation, and body condition score (BCS) before first service. Lactating Holstein cows from 3 commercial farms in New York State cows were blocked by parity group and total milk yield in their previous lactation and then randomly assigned to VWP of 60 (VWP60; n = 1,352) or 88 (VWP88; n = 1,359) days in milk (DIM). All cows received the Double-Ovsynch protocol (GnRH-7 d-PGF-3 d-GnRH-7 d-GnRH-7 d-PGF-56 h-GnRH-16 to 20 h-timed artificial insemination; TAI) for synchronization of ovulation and TAI. For second and greater artificial insemination (AI), cows received AI after detection of estrus or the Ovsynch protocol (GnRH-7 d-PGF-56 h-GnRH-16 to 20 h-TAI) initiated 32 ± 3 d after AI for cows not re-inseminated at detected estrus. Cyclicity status (progesterone concentration), uterine health (vaginal discharge and uterine cytology), BCS, and systemic inflammation (haptoglobin concentration) were evaluated at baseline (33 ± 3 DIM for both treatments), beginning of the Double-Ovsynch protocol, and 10 d before TAI. Effects of treatments were assessed with multivariable statistical methods relevant for each outcome variable. Extending duration of VWP from 60 to 88 DIM increased pregnancies per AI (P/AI) to first service (VWP60 = 41%; VWP88 = 47%). Nonetheless, the greatest benefit of extending VWP on first-service P/AI was for primiparous cows (VWP60 = 46%; VWP88 = 55%), as P/AI did not differ within the multiparous cow group (VWP60 = 36%; VWP88 = 40%). Physiological status more conducive to pregnancy—characterized by improved uterine health, greater BCS, reduced systemic inflammation, and to a lesser extent more time to resume ovarian cyclicity—explained the increment in P/AI to first service. Our data also indicated that despite having greater P/AI to first service, cows with the longer VWP had delayed time to pregnancy during lactation (hazard ratio = 0.72; 95% confidence interval 0.69–0.98) and greater risk of leaving the herd, particularly for multiparous cows (hazard ratio = 1.34; 95% confidence interval 1.23–1.47). This shift in pregnancy timing led to an overall extension of the lactation length (+13 d), which resulted in greater total milk yield per lactation (+491 kg) but not greater milk yield per day of lactation. In conclusion, data from this experiment highlight the importance of considering the complex interactions between reproductive performance, herd exit dynamics, and lactation performance as well as the effects of parity at the time of defining the duration of the VWP for lactating dairy cows.  相似文献   

15.
It has been argued that dairy cows with a high genetic milk production potential can maintain high milk production even with total omission of the dry period. Further, when omitting the dry period, cows are believed to experience fewer metabolic changes during the transition from late gestation to early lactation compared with cows having a traditional dry period. The performance and metabolic response to omission of the dry period for cows with an expected peak milk yield higher than 45 kg/d were studied in 28 Holstein dairy cows. The cows were followed in late gestation and in the subsequent 5 wk of early lactation. Fourteen cows were milked through late gestation (CM) and another 14 dairy cows underwent a 7-wk dry period (DRY). In the early lactation period, the cows had the same dry matter (DM) intake but cows in the CM group had a 22% reduction in milk yield compared with the cows in the DRY group. At calving, the experimental groups had the same average body weight and body condition score and there were no significant differences in body weight and body condition score changes in early lactation. However, the cows in the CM group compared with the cows in the DRY group had a higher plasma concentration of glucose and insulin and a lower plasma concentration of nonesterified fatty acids and β-hydroxybutyrate in the following 5 wk of early lactation. Furthermore, the cows in the CM group had lower liver triacylglycerol concentration and higher liver glycogen concentration in the following early lactation. It is concluded that, even in dairy cows with an expected peak milk yield above 45 kg/d, omission of the dry period results in a relatively high reduction in milk yield in the following early lactation. Furthermore, these cows are in less metabolic imbalance in the following early lactation.  相似文献   

16.
The objective of this study was to determine the associations of rumination time (RT) and health status with milk yield and milk composition. This study used 339 dairy cows from 4 commercial dairy farms in Ontario, Canada (first lactation, n = 107; second lactation, n = 112; ≥third lactation, n = 120). Rumination time was monitored (24 h/d) using an automated system from 1 to 28 d in milk (DIM). Cows were milked 3×/d on each farm, and 2 farms recorded milk weights at each milking to determine daily milk yield (n = 170). Cows were also monitored for milk composition (fat and protein content) 1×/wk. Last, subclinical ketosis (SCK) was diagnosed 1×/wk; cows with at least one blood sample with β-hydroxybutyrate ≥1.2 mmol/L postcalving were diagnosed with SCK. Cases of retained placenta, metritis, milk fever, or mastitis during the study period were also recorded. Cows were categorized into 1 of 4 groups: healthy cows that had no SCK or any other health issue (HLT; n = 139); cows that were treated for at least one health issue other than SCK (HLT+; n = 50); SCK cows with no other health problems during transition (HYK; n = 97); or cows that had SCK and one or more other health problems (HYK+; n = 53). All data were summarized by week across cows, and the associations between rumination time and milk yield (n = 170) and milk composition (n = 339) were modeled. Across all lactations, and including all health categories, milk yield increased by week, whereas fat and protein content both decreased by week. A positive association was found between summarized RT and milk yield in first-lactation (+0.006 ± 0.003 kg/min of RT) and second-lactation (+0.015 ± 0.004 kg/min of RT) cows from 4 to 28 DIM, as well as in ≥third-lactation cows; however, the relationship between RT and milk yield differed across weeks in those cows. A negative association between RT and milk fat content was found in ≥third-lactation cows (?0.002 ± 0.00059 percentage points/min of RT). From 4 to 28 DIM, ≥third-lactation HYK and HYK+ cows produced less protein (0.11 ± 0.051 and 0.13 ± 0.056 percentage points, respectively) than HLT cows. Over the 4-wk observation period, first-lactation HYK+ cows tended to deposit 0.11 ± 0.056 percentage points less protein in their milk compared with HLT cows. Second-lactation HYK+ cows produced less milk than HLT cows each week during early lactation. In summary, RT was positively associated with milk yield in early-lactation dairy cows, across all lactations, and negatively associated with milk fat content in ≥third-lactation cows. Further, the results showed that early-lactation cows that experience SCK, particularly with one or more other health problems, might have decreased milk yield and milk protein content.  相似文献   

17.
In transition dairy cows, plasma levels of the insulin-sensitizing hormone adiponectin fall to a nadir at parturition and recover in early lactation. The transition period is also characterized by rapid changes in metabolic and hormonal factors implicated in other species as positive regulators of adiponectin production (i.e., negative energy balance, lipid mobilization) and others as negative regulators (i.e., reduced leptin and insulin and increased growth hormone and plasma fatty acids). To assess the role of onset of negative energy balance and lipid mobilization after parturition, dairy cows were either milked thrice daily (lactating) or never milked (nonlactating) for up to 4 wk after parturition. Plasma adiponectin was 21% higher across time in nonlactating than lactating cows. Moreover, nonlactating cows recovered plasma adiponectin at similar rates as lactating cows even though they failed to lose body condition. Next, we assessed the ability of individual hormones to alter plasma adiponectin in transition dairy cows. In the first experiment, dairy cows received a constant 96-h intravenous infusion of either saline or recombinant human leptin starting on d 8 of lactation. In the second experiment, dairy cows were studied in late pregnancy (LP, starting on prepartum d ?31) and again in early lactation (EL, starting on d 7 postpartum) during a 66-h period of basal sampling followed by 48 h of hyperinsulinemic-euglycemia. In the third experiment, cows were studied either in LP (starting on d ?40 prepartum) or EL (starting on d 7 postpartum) during a 3-h period of basal sampling followed by 5 d of bovine somatotropin treatment. Plasma adiponectin was reduced by an average of 21% in EL relative to LP in these experiments, but neither leptin, insulin, or growth hormone treatment affected adiponectin in LP or EL. Finally, the possibility that plasma fatty acids repress plasma adiponectin was evaluated by intravenous infusion of a lipid emulsion in nonpregnant, nonlactating cows in the absence or presence of glucagon for 16 consecutive hours. The intralipid infusion increased plasma fatty acid concentration from 102 to over 570 µM within 3 h but had no effect on plasma adiponectin irrespective of presence or absence of glucagon. Overall, these data suggest that energy balance around parturition may regulate plasma adiponectin but do not support roles for lipid mobilization or sustained changes in the plasma concentration of leptin, insulin, growth hormone, or fatty acids.  相似文献   

18.
《Journal of dairy science》2021,104(9):10399-10414
Intensified milk replacer (MR) feeding in calves has nutritional long-term effects and is suggested to increase milk production later in life. However, the underlying mechanisms are not completely understood. The aim of our study was to investigate whether MR feeding intensity has long-term effects on energy metabolism and energy use efficiency of dairy calves. Newborn female Holstein calves (n = 28) were randomly assigned to 2 liquid feeding groups offered daily either 10% of body weight (BW) colostrum followed by 10% of BW MR (10%-MR) or 12% of BW colostrum followed by 20% of BW MR (20%-MR). Calves were housed individually. Weaning was completed by the end of wk 12. Hay and calf starter were fed from d 1 until the end of wk 14 and 16, respectively. A total mixed ration was fed from wk 11 onward, and the metabolizable energy intake (MEI) was determined daily. Energy metabolism of calves was measured in respiratory chambers before weaning in wk 6 and 9, and after weaning in wk 14 and 22. The MEI/BW0.75 was higher before weaning but lower during and shortly after weaning in 20%-MR calves. During the preweaning period, the 20%-MR animals had higher average daily gain, BW, back fat thickness and muscle diameter, but lower plasma β-hydroxybutyrate concentrations. The group difference in average daily gain ceased in wk 9, differences in back fat thickness and muscle diameter ceased after weaning, whereas difference in BW0.75 persisted until wk 23. The energy conversion ratio (BW gain/MEI) was not different before weaning, but was lower during and after weaning in 20%-MR calves. The higher MEI and BW0.75 in 20%-MR calves resulted in higher heat production (HP), as well as in higher carbohydrate oxidation (COX) and fat oxidation during the preweaning period. Gas exchange variables normalized to BW0.75 or MEI differed between groups only during preweaning. The energy balance was lower in 10%-MR calves in wk 6 and 9. The HP/BW0.75 and COX/BW0.75 were higher, whereas HP/MEI was lower in 20%-MR calves in wk 6. When normalized to BW0.75 and MEI, HP in wk 6 and 9, and COX in wk 9 was lower in 20%-MR calves. In conclusion, 20%-MR calves showed greater efficiency estimates preweaning, but this effect did not occur after weaning, suggesting that energy use efficiency does not persist until later stages in life.  相似文献   

19.
The current study was conducted to investigate the effects of 5,6-dimethylbenzimidazole (DMB) supplementation to the feed during the transition period and early lactation on the vitamin B12 supply, lactation performance, and energy balance in postpartum cows. Twenty-four prepartum Holstein dairy cows were divided into 12 blocks based on their parity and milk yield at the last lactation and were then randomly allocated to 1 of 2 treatments: a basal diet without DMB (control) or a treatment diet that contained 1.5 g of DMB/d per cow. The study started at wk 3 before the expected calving day and ended at wk 8 postpartum. The feed intake and the lactation performance were measured weekly after calving. Blood parameters were measured on d ?10, 0, 8, 15, 29, 43, and 57 relative to the calving day. Body weight was measured on the calving day and on d 57 after calving. The yields of milk, protein, and lactose in cows fed DMB were higher than in the control throughout the whole postpartum stage. On wk 8 postpartum, the vitamin B12 content in the milk and sera was greater in cows fed DMB than in the control. The overall body weight loss from wk 1 to 8 postpartum was less in cows fed DMB than in the control. The plasma content of nonesterified fatty acids and β-hydroxybutyric acid was significantly lower in cows fed DMB than in the control throughout the whole experimental stage. In conclusion, dietary DMB fed during the transition period and early lactation improved the vitamin B12 supply, milk production, and energy balance of postpartum dairy cows.  相似文献   

20.
Ketosis causes serious economic losses for the modern dairy industry because it is a highly prevalent metabolic disease among cows in high-producing herds during the transition period. Due to some striking similarities between diabetes in humans and ketosis in dairy cows, there is potential for the use of methylglyoxal (MGO)—commonly used in human diabetics—as a biomarker in dairy cattle. However, currently no data are available about the presence of MGO in the serum of dairy cattle or about the characteristics of its production or its potential contribution in the pathogenesis of ketosis. To determine the potential origin and pathway of formation of MGO, cows in different metabolic conditions [i.e., non-subclinically ketotic dairy cows in early lactation (n = 7), subclinically ketotic dairy cows in early lactation (n = 8), overconditioned dry cows (BCS >4.25, n = 6), and nonlactating heifers (n = 6)] were selected. Serum MGO concentrations were determined and correlated with indicators of the glucose and lipid metabolism and with haptoglobin (Hp) as an inflammatory marker. The serum MGO concentrations in subclinically ketotic cows (712.60 ± 278.77 nmol/L) were significantly greater than in nonlactating heifers (113.35 ± 38.90 nmol/L), overconditioned dry cows (259.71 ± 117.97 nmol/L), and non-subclinically ketotic cows (347.83 ± 63.56 nmol/L). In serum of lactating cows, concentrations of glucose and fructosamine were lower than in heifers and were negatively correlated with MGO concentrations. Even so, concentrations of metabolic and inflammatory markers such as dihydroxyacetone phosphate, nonesterified fatty acids, β-hydroxybutyrate, acetone, and Hp were remarkably higher in subclinically ketotic cows compared with nonlactating heifers; these metabolites were also positively correlated with MGO. In human diabetics elevated MGO concentrations are stated to originate from both hyperglycemia and the enhanced lipid metabolism, whereas higher MGO concentrations in subclinically ketotic cows were not associated with hyperglycemia. Therefore, our data suggest MGO in dairy cows to be a metabolite produced from the metabolization of acetone within the lipid metabolization pathway and from the metabolization of dihydroxyacetone phosphate. Furthermore, the highly positive correlation between MGO and Hp suggests that this reactive compound might be involved in the proinflammatory state of subclinical ketosis in dairy cows. However, more research is needed to determine the potential use of MGO as a biomarker for metabolic failure in dairy cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号