首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
With the objective of evaluating the potential effects of sodium bicarbonate or a magnesium-based product on rumen pH and milk performance of dairy cattle exposed to a dietary challenge, 30 lactating Holstein cows (648 ± 67 kg of body weight; 44.4 ± 9.9 kg/d of milk yield; 155 ± 75 d in milk) were blocked by parity (9 primiparous and 21 multiparous) and randomly distributed to 3 treatment groups. One group received a total mixed ration (TMR) that acted as a control (CTR), a second group (SB) received the same TMR but with an additional supplementation of 0.8% of sodium bicarbonate, and a third group (MG) received the same TMR as CTR but an additional supplementation of 0.4% of a magnesium-based product (pHix-Up, Timab, Dinard, France). After 1 wk of exposure to this TMR, all 3 rations were supplemented with 1 kg/d of barley, which was then increased 1 kg/wk until reaching 3 kg/d of barley during wk 4 of the study. Every kilogram of barley replaced 1 kg of forage in the diet. Individual feed intake and behavior were monitored using electronic feed bins. Seven cows per treatment were equipped with an intraruminal bolus that recorded pH every 15 min. As the severity of the barley challenge increased, dry matter intake decreased, but this decrease was more pronounced in SB cows than in MG cows, with an intermediate response for CTR cows. The MG cows produced more milk when challenged with 2 or 3 kg/d of additional barley than when challenged with 1 kg/d, whereas CTR cows produced less milk with the 3 kg/d challenge compared with 1 or 2 kg/d, and the SB cows maintained milk production. Milk fat content decreased with barley challenges, with CTR cows experiencing a more severe decrease than SB cows, which maintained stable butterfat values throughout the study, and MG cows showed a decline in milk fat content only with the 3 kg/d of additional barley. Meal size was also reduced as the severity of barley challenge increased, and this reduction was more modest in MG cows than in SB cows. The number of daily meals consumed by SB and MG cows was more constant than that recorded in CTR cows. Cows on the CTR and SB treatments showed a marked decrease in rumen pH with the 3 kg/d of additional barley, whereas MG cows maintained stable rumen pH during the barley challenges and had greater average rumen pH (5.93 ± 0.04) than CTR cows (5.83 ± 0.04) with the 3 kg/d of additional barley; SB cows showed intermediate values (5.85 ± 0.04). Last, MG cows spent less time (32.3 ± 6.1%) with rumen pH ≤5.8 when exposed to the 3 kg/d of barley challenge than CTR and SB cows (50.7 ± 5.02%). In conclusion, supplementation with MG prevents the decline in dry matter intake and milk production induced by a rumen challenge, whereas supplementation with SB prevents the decay in milk production but does not prevent the decrease in feed intake. These changes were probably due to the ability of the MG treatment to prevent a reduction in rumen pH when challenging cows with 3 kg/d of additional barley in the ration.  相似文献   

2.
Two experiments were carried out to evaluate different dietary buffers and their influence on (1) rumen pH in dairy cows and (2) milk production in dairy cows. The supplements included were calcareous marine algae (CMA; Lithothamnion calcareum), with or without marine magnesium oxide (MM; precipitated magnesia derived from seawater), and sodium bicarbonate (SB). Dietary treatments in experiment 1 consisted of the control [32.9% starch and sugar, and 19.9% neutral detergent fiber from forage per kg of dry matter (DM)] including no dietary buffer (CON); the control plus 0.45% DM CMA (CMA); the control plus 0.45% DM CMA and 0.11% DM MM (CMA+MM); the control plus 0.9% DM SB (SB). Diets were formulated to a dry matter intake (DMI) of 18 kg per cow/d. Dietary treatments in experiment 2 also consisted of CON (28.3% starch and sugar, and 23% neutral detergent fiber from forage per kg of DM), CMA, CMA+MM, and SB and were formulated to achieve identical intakes of experimental ingredients (80 g of CMA, 80 g of CMA plus 20 g MM, and 160 g of SB per cow/d) with a DMI of 22.6 kg per cow/d. Experiment 1 used 4 rumen-cannulated dairy cows in a 4 × 4 Latin square design. Rumen pH was measured over five 2-h periods, following feeding, using rumen pH probes. In experiment 2, 52 multiparous and 4 primiparous cows (62.7 ± 3.4 d in milk) were assigned to 4 experimental treatments for 80 d. Both CMA treatments maintained a greater mean rumen pH than the CON during 4 of the 5 periods following feeding and the CON had a greater number of hours below rumen pH 5.5 compared with all other treatments. Dry matter intakes tended to be higher on the SB compared with CON. The CMA treatment increased the production of milk fat and protein yield (kg/d) compared with all other treatments. Both CMA and CMA+MM increased milk fat yield compared with CON but were similar to each other and SB. Protein yield was highest in the CMA treatment compared with CON, CMA+MM, and SB. All 3 buffer treatments increased milk fat concentration compared with CON but did not differ from each other. The SB treatment reduced milk protein concentration and milk production efficiency, energy-corrected milk per kilogram of DMI. Results indicate that the addition of CMA can benefit milk fat and protein production when included in diets based on typical feedstuffs of the northern European region. The use of CMA when compared with SB, in such diets, can increase milk protein production and milk production efficiency.  相似文献   

3.
The aim of the study was to compare the effect of fiber- or starch-rich diets based on grass silage, supplemented or not with bicarbonate, on CH4 emissions and milk fatty acid (FA) profile in dairy cows. The experiment was conducted as a 4 × 4 Latin square design with a 2 × 2 factorial arrangement: carbohydrate type [starch- or fiber-rich diets with dietary starch level of 23.1 and 5.9% on a dry matter basis, respectively], without or with bicarbonate addition [0 and 1% of the dry matter intake, respectively]. Four multiparous lactating Holstein cows were fed 4 diets with 42% grass silage, 8% hay, and 50% concentrate in 4 consecutive 4-wk periods: (1) starch-rich diet, (2) starch-rich diet with bicarbonate, (3) fiber-rich diet, and (4) fiber-rich diet with bicarbonate. Intake and milk production were measured daily and milk composition was measured weekly; CH4 emission and total-tract digestibility were measured simultaneously (5 d, wk 4) when animals were in open-circuit respiration chambers. Sensors continuously monitored rumen pH (3 d, wk 4), and fermentation parameters were analyzed from rumen fluid samples taken before feeding (1 d, wk 3). Cows fed starch-rich diets had less CH4 emissions (on average, ?18% in g/d; ?15% in g/kg of dry matter intake; ?19% in g/kg of milk) compared with fiber-rich diets. Carbohydrate type did not affect digestion of nutrients, except starch, which increased with starch-rich diets. The decrease in rumen protozoa number (?36%) and the shift in rumen fermentation toward propionate at the expense of butyrate for cows fed the starch-rich diets may be the main factor in reducing CH4 emissions. Milk of cows fed starch-rich diets had lower concentrations in trans-11 C18:1, sum of cis-C18, cis-9,trans-11 conjugated linoleic acid (CLA), and sum of CLA, along with greater concentration of some minor isomers of CLA and saturated FA in comparison to the fiber-rich diet. Bicarbonate addition did not influence CH4 emissions or nutrient digestibility regardless of the carbohydrate type in the diet. Rumen pH increased with bicarbonate addition, whereas other rumen parameters and milk FA composition were almost comparable between diets. Feeding dairy cows a starch-rich diet based on grass silage helps to limit the negative environmental effect of ruminants, but does not lead to greater milk nutritional value because milk saturated FA content is increased.  相似文献   

4.
An experiment was conducted to uncover the effects of increasing dietary grain levels on expression of thiamine transporters in ruminal epithelium, and to assess the protective effects of thiamine against high-grain-induced inflammation in dairy cows. Six rumen-fistulated, lactating Holstein dairy cows (627 ± 16.9 kg of body weight, 180 ± 6 d in milk; mean ± standard deviation) were randomly assigned to a replicated 3 × 3 Latin square design trial. Three treatments were control (20% dietary starch, dry matter basis), high-grain diet (HG, 33.2% dietary starch, DM basis), and HG diet supplemented with 180 mg of thiamine/kg of dry matter intake. On d 19 and 20 of each period, milk performance was measured. On d 21, ruminal pH, endotoxic lipopolysaccharide (LPS), and thiamine contents in rumen and blood, and plasma inflammatory cytokines were detected; a rumen papillae biopsy was taken on d 21 to determine the gene and protein expression of toll-like receptor 4 (TLR4) signaling pathways. The HG diet decreased ruminal pH (5.93 vs. 6.49), increased milk yield from 17.9 to 20.2 kg/d, and lowered milk fat and protein from 4.28 to 3.83%, and from 3.38 to 3.11%, respectively. The HG feeding reduced thiamine content in rumen (2.89 vs. 8.97 μg/L) and blood (11.66 vs. 17.63 μg/L), and the relative expression value of thiamine transporter-2 (0.37-fold) and mitochondrial thiamine pyrophosphate transporter (0.33-fold) was downregulated by HG feeding. The HG-fed cows exhibited higher endotoxin LPS in rumen fluid (134,380 vs. 11,815 endotoxin units/mL), and higher plasma concentrations of lipopolysaccharide binding protein and pro-inflammatory cytokines when compared with the control group. The gene and protein expression of tumor necrosis factor α (TNFα), IL1B, and IL6 in rumen epithelium increased when cows were fed the HG diet, indicating that local inflammation occurred. The depressions in ruminal pH, milk fat, and protein of HG-fed cows were reversed by thiamine supplementation. Thiamine supplementation increased thiamine contents in rumen and blood, and also upregulated the relative expression of thiamine transporters compared with the HG group. Thiamine supplementation decreased ruminal LPS (49,361 vs. 134,380 endotoxin units/mL) and attenuated the HG-induced inflammation response as indicated by a reduction in plasma IL6, and decreasing gene and protein expression of pro-inflammatory cytokines in rumen epithelium. Western bottling analysis showed that thiamine suppressed the protein expression of TLR4 and the phosphorylation of nuclear factor kappa B (NFκB) unit p65. In conclusion, HG feeding inhibits thiamine transporter expression in ruminal epithelium. Thiamine could attenuate the epithelial inflammation during high-grain feeding, and the protective effects may be due to its ability to suppress TLR4-mediated NFκB signaling pathways.  相似文献   

5.
Oral supplementation of clay to dairy cattle has been reported to reduce toxicity of aflatoxin (AF) in contaminated feed. The objective of this study was to determine the effects of 3 concentrations of dietary clay supplementation in response to an AF challenge. Ten multiparous rumen-cannulated Holstein cows [body weight (mean ± SD) = 669 ± 20 kg and 146 ± 69 d in milk], were assigned to 1 of 5 treatments in a randomized replicated 5 × 5 Latin square design balanced to measure carryover effects. Periods (21 d) were divided in an adaptation phase (d 1 to 14) and a measurement phase (d 15 to 21). From d 15 to 17, cows received an AF challenge. The challenge consisted of 100 μg of aflatoxin B1 (AFB1)/kg of dietary dry matter intake (DMI). The material was fitted into 10-mL gelatin capsules and administered into the rumen through a rumen-cannula based on the average DMI obtained on d 12 to 14. Treatments were no clay plus an AF challenge (POS); 3 different concentrations of clay (0.5, 1, or 2% of dietary DMI) plus an AF challenge; and a control consisting of no clay and no AF challenge (C). Statistical analysis was performed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). Two contrasts, CONT1 (POS vs. C) and CONT2 (POS vs. the average of 0.5, 1, and 2% clay), were compared along with the linear and quadratic treatment effects (POS, 0.5%, 1%, 2%). Cows supplemented with clay had lower AF excretion in milk as aflatoxin M1 (AFM1; 0.5% = 20.83 μg/d, 1% = 22.82 μg/d, and 2% = 16.51 μg/d) and AF transfer from rumen fluid to milk (AFM1; 0.5% = 1.01%, 1% = 0.98%, and 2% = 0.74%) compared with cows in POS (AFM1 = 27.81 μg/d and AF transfer = 1.37%, CONT2). Similarly, concentrations of AFM1 in milk (0.5% = 0.35 μg/kg, 1% = 0.30 μg/kg, 2% = 0.25 μg/kg), AFB1 in feces (0.5% = 1.79 μg/g, 1% = 1.52 μg/kg, 2% = 1.48 μg/kg), and AFB1 in rumen fluid (0.5% = 0.05 μg/kg, 1% = 0.02 μg/kg, 2% = 0.02 μg/kg) were reduced in cows fed clay compared with POS (0.43 μg/kg, 2.78 μg/kg, and 0.10 μg/kg, respectively, CONT2). Cows supplemented with clay tended to have lower 3.5% fat-corrected milk [0.5% = 38.2 kg, 1% = 39.3 kg, 2% = 38.4 kg, standard error of the mean (SEM) = 1.8] than cows in POS (41.3 kg; SEM = 1.8; CONT2). Plasma superoxide dismutase (SOD) concentration tended to be lower for cows fed clay in the diet (0.5% = 2.16 U/mL, 1% = 1.90 U/mL, 2% = 2.3 U/mL; SEM = 0.3) than for cows in POS (2.72 U/mL; CONT2). Additionally, when cows were exposed to AF without clay in the diet, plasma concentrations of aspartate aminotransferase (AST) decreased from 84.23 (C) to 79.17 (POS) and glutamate dehydrogenase (GLDH) decreased from 91.02 (C) to 75.81 (POS). In conclusion, oral supplementation of clay reduced the transfer of AF from the rumen to milk and feces.  相似文献   

6.
《Journal of dairy science》2021,104(10):10699-10713
This study determined feeding behavior, dry matter (DM) intake (DMI), rumen fermentation, and milk production responses of lactating dairy cows fed with kale (Brassica oleracea) or swede (Brassica napus ssp. napobrassica). Twelve multiparous lactating dairy cows (560 ± 22 kg of body weight, 30 ± 4 kg of milk/d, and 60 ± 11 d in milk at the beginning of the experiment; mean ± standard deviation) were randomly allocated to 3 dietary treatments in a replicated 3 × 3 Latin square design. The control diet comprised 10 kg of grass silage DM/d, 4 kg of ryegrass herbage DM/d, and 8.8 kg of concentrate DM/d. Then, 25% of herbage, silage, and concentrate (DM basis) was replaced with either kale or swede. Cows offered kale had decreased total DMI compared with cows fed the control and swede diets, whereas inclusion of swede increased eating time. Milk production, composition, and energy-corrected milk:DMI ratio were not affected. Cows fed with kale had a greater rumen acetate:propionate ratio, whereas swede inclusion increased the relative percentage of butyrate. Estimated microbial N was not affected by dietary treatments, but N excretion was reduced with inclusion of kale, improving N utilization. Cows fed kale tended to have increased nonesterified fatty acids and showed presence of Heinz-Ehrlich bodies, whereas hepatic enzymes such as aspartate aminotransferase, γ-glutamyl transferase, and glutamate dehydrogenase were not affected by dietary treatments. In plasma, compared with the control, swede and kale reduced total saturated fatty acids and increased total polyunsaturated fatty acids and total n-3 fatty acids. Overall, feeding cows with winter brassicas had no negative effect on production responses. However, mechanisms to maintain milk production were different. Inclusion of swede increased the time spent eating and maintained DMI with a greater relative rumen percentage of butyrate and propionate, whereas kale reduced DMI but increased triacylglycerides mobilization, which can negatively affect reproductive performance. Thus, the inclusion of swede may be more suitable for feeding early-lactating dairy cows during winter.  相似文献   

7.
The objective of this study was to determine the effects of feeding alfalfa hay on chewing activity, rumen fermentation, and milk fat concentration of dairy cows fed wheat-based dried distillers grains with solubles (DDGS) as a partial replacement of barley silage. Thirty lactating Holstein cows (220 ± 51 DIM), 6 of which were ruminally cannulated, were used in a 3 × 3 Latin square design with 21-d periods. Cows were fed a control diet [CON; 50% barley silage and 50% concentrate mix on a dry matter (DM) basis], a diet in which barley silage was replaced with DDGS at 20% of dietary DM (DG), or a diet in which barley silage was replaced with DDGS and alfalfa hay at 20 and 10% of dietary DM, respectively (DG+AH). All diets contained approximately 20% crude protein. Compared with the CON diet, cows fed DG and DG+AH diets respectively had greater DM intake (20.1 vs. 23.1 and 22.7 kg/d); yields of milk (24.5 vs. 27.3 and 28.1 kg/d), milk protein (0.88 vs. 0.99 and 1.01 kg/d), and milk lactose (1.11 vs. 1.24 and 1.29 kg/d); and body weight gain (0.25 vs. 1.17 and 1.23 kg/d). However, compared with cows fed the CON diet, cows fed the DG and DG+AH diets respectively had lower chewing time (38.3 vs. 30.7 and 31.5 min/kg of DM intake), mean rumen pH (6.11 vs. 5.88 and 5.84), and minimum rumen pH (5.28 vs. 5.09 and 5.07) and a greater duration that rumen pH was below 5.8 (7.3 vs. 11.2 and 12.0 h/d). However, these response variables did not differ between cows fed the DG and DG+AH diets. Milk fat concentration differed among the 3 diets (3.92, 3.60, and 3.38% for CON, DG, and DG+AH, respectively), but milk fat yield was not affected by treatment. These results indicate that partially replacing barley silage with DDGS can improve productivity of lactating dairy cows but may decrease chewing time, rumen pH, and milk fat concentration, and that dietary inclusion of alfalfa hay may not alleviate such responses.  相似文献   

8.
In Experiment 1, the effect, in early lactation, of 0 or 3 g of supplemental choline/kg of total diet DM on milk yield and composition was tested in 20 first lactation and older Holstein cows. In Experiment 2, 30 first lactation and older Holstein cows between 45 and 200 d postpartum were assigned to treatments of 0, 2.5, and 5.0 g of supplemental choline/kg of total diet DM to test the effect of dietary choline with diets based on corn and soybean meal. In Experiments 1 and 2, added choline had no effect on either milk yield or fat-corrected milk yield. In both experiments, fat yield and fat percentage tended to increase with choline supplementation, but protein yield and protein percentage were unaffected. In Experiment 1, choline had no effect on serum lipids. Ruminal dosing of steers with 27 g/d supplemental choline in Experiment 3 increased duodenal choline flow by only 3 g/d. The apparent rumen degradability of choline tended to be higher (77.1 vs. 70.6%) in the supplemented steers. Choline concentration in rumen fluid and duodenal chyme were higher in the supplemented steers. Choline supplementation in Experiments 1 and 3 had no effect on rumen VFA or rumen pH. Dietary choline supplementation apparently is ineffective because of rapid degradation of choline in the rumen.  相似文献   

9.
The effect of inducing subacute ruminal acidosis (SARA) on the free-choice intake of sodium bicarbonate (SB) was investigated in four midlactation Holstein cows in a switchover experiment with four 1-wk periods. The SARA was induced by replacing 25% of the ad libitum intake of total mixed ration (TMR) with pellets containing 50% ground wheat and 50% ground barley and restricting access to TMR from 0700 to 1700 h. Control consisted of feeding TMR ad libitum. Powdered SB was provided for ad libitum consumption. Rumen pH was measured continuously using indwelling pH probes. Induction of SARA reduced (P < 0.05) the average daily rumen pH from 6.08 to 5.87, increased (P < 0.05) the average duration of rumen pH below 6 from 547 min x d(-1) to 916 min x d(-1), and increased (P < 0.05) the average duration of rumen pH below 5.6 from 132 min x d(-1) to 397 min x d(-1) (P < 0.05) but did not significantly affect SB intake. Average intake of SB was 26.8 g x d(-1) during SARA and 34.5 g x d(-1) during control. These low SB intakes must not have substantially affected rumen pH. Sodium bicarbonate intake differed significantly (P < 0.05) between cows. These data indicate that cows did not select SB in order to attenuate SARA.  相似文献   

10.
Our objective was to assess the effects of feeding negative dietary cation-anion difference (DCAD) prepartum diets on milk production, reproductive performance, and culling. Cows from 4 commercial farms in Ontario, Canada were enrolled in a pen-level controlled trial from November 2017 to April 2019. Close-up pens (1 per farm) with cows 3 wk before calving were randomly assigned to a negative DCAD (TRT; ?108 mEq/kg of dry matter; target urine pH 6.0–6.5) or a control diet (CON; +105 mEq/kg of dry matter with a placebo supplement). Each pen was fed TRT or CON for 3 mo (1 period), and then switched to the other treatment for the next period (4 periods per farm). Data from 15 experimental units (8 pen treatments in TRT and 7 in CON), with a total of 1,086 observational units (cows), were included. The effect of treatment on milk yield at the first 3 milk recording tests of lactation was assessed with linear regression models accounting for repeated measures. The risk of pregnancy at first artificial insemination and culling by 30, 60, and 305 d in milk (DIM) were analyzed with logistic regression models, and effects on time to first AI, pregnancy, and culling were assessed with Cox proportional hazards models. All models included treatment, parity, and their interactions, accounting for pen-level randomization and clustering of animals within farm with random effects, giving 10 degrees of freedom for treatment effects. Multiparous cows fed TRT produced more milk at the first (42.0 vs. 38.8 ± 1.2 kg/d) and second (44.2 vs. 41.7 ± 1.3 kg/d) milk tests. However, multiparous cows fed TRT tended to have 0.2 percentage units less milk fat content at these tests. Although multiparous cows fed TRT tended to have greater energy-corrected milk at the first test (least squares means ± standard error: TRT = 46.1 ± 0.9 vs. CON = 43.8 ± 1 kg/d), there were no differences observed in energy-corrected milk at the second or third tests. In primiparous cows, there was no effect of treatment on milk production. Multiparous cows fed TRT had greater pregnancy to first insemination (TRT = 42 ± 3 vs. CON = 32 ± 4%) and tended to have shorter time to pregnancy [hazard ratio (HR) = 1.20; 95% CI: 0.96–1.49]. In primiparous cows fed TRT, time to pregnancy was increased (HR = 0.76; 95% CI: 0.59–0.99). Culling by 30 DIM tended to be less in TRT (3.3 ± 1.1%) than CON (5.5 ± 1.8%). No effect of treatment on culling by 305 DIM was detected in primiparous cows, but in multiparous cows, the TRT diets decreased the odds of culling (21.3 ± 1.9 vs. 31.7 ± 2.8%) and daily risk of culling to 305 DIM (HR = 0.64; 95% CI: 0.46 to 0.89). Under commercial herd conditions, prepartum negative DCAD diets improved milk production and reproductive performance, and reduced culling risk in multiparous cows. In primiparous cows, TRT diets had no effect on milk yield or culling, but increased the time to pregnancy. Our results suggest that negative DCAD diets should be targeted to multiparous cows.  相似文献   

11.
《Journal of dairy science》2021,104(11):11593-11608
The objective of this study was to evaluate the effect of concentrate supplement type on milk production, nutrient intake, and total-tract nutrient digestion in lactating dairy cows grazing mid-season perennial ryegrass (Lolium perenne L.; PRG) pasture. Twelve primiparous (mean ± standard deviation; 95 ± 30 d in milk and 470 ± 43 kg of body weight) and 68 multiparous (99 ± 24 d in milk and 527 ± 64 kg of body weight) lactating dairy cows were blocked based on pre-study milk yield and parity and randomly assigned to 1 of 4 dietary treatments. The 4 dietary treatments were a non-supplemented PRG control (PRG); PRG supplemented with 4.4 kg of dry matter (DM) per cow per day of citrus pulp and 0.067 kg of DM/cow per day of urea (PRG+C); PRG supplemented with 0.8 kg of DM/cow per day of heat-treated soybean meal (PRG+PP); and PRG supplemented with 3.1 kg of DM/cow per day of a combination of heat-treated soybean meal and citrus pulp (PRG+C+PP). The study consisted of a 2-wk adaptation period and a 10-wk period of data collection. Weekly measurements of milk yield, body weight, body condition score, and feeding and rumination time were made. Nutrient intake and total-tract digestibility were measured during wk 6 of the study. A large soil moisture deficit was experienced during the study that probably reduced herbage growth rate and likely altered the chemical composition of the PRG offered when compared with typical mid-season PRG. Total dry matter intake was increased in cows fed PRG+C compared with cows fed PRG and PRG+PP and was similar to cows fed PRG+C+PP (18.0, 15.9, 16.4, and 17.2 ± 0.41 kg of DM/d, respectively). The apparent total-tract neutral detergent fiber digestibility of cows fed the PRG+C diet was lower compared with the PRG and PRG+PP diets and was similar to the PRG+C+PP diet (0.67, 0.70, 0.70, and 0.69 ± 0.01 g/g, respectively). The energy-corrected milk (ECM) yield of cows fed PRG+C+PP was highest (23.7 kg/d), PRG+C was intermediate (22.2 kg/d), and PRG was lowest (20.8 kg/d). Cows fed PRG+PP produced more ECM (22.9 kg/d) compared with cows fed PRG and produced similar ECM compared with cows fed PRG+C and PRG+C+PP diets. The PRG+PP diet increased milk protein yield compared with the PRG diet, tended to increase milk protein yield compared with the PRG+C diet, and was similar to the PRG+C+PP diet. Milk fat concentration and the composition of milk fat were not influenced by treatment. The results demonstrated that, for cows consuming pasture-based diets, increasing metabolizable protein supply allowed higher milk yield as metabolizable protein was more limiting than metabolizable energy. However, due to the large soil moisture deficit experienced during this experiment, caution is recommended when extrapolating these results to cows consuming typical mid-season PRG herbage.  相似文献   

12.
Two experiments were conducted to examine dietary effects of .8% sodium bicarbonate and 1.4 kg/d of alfalfa hay on performance and rumen metabolism of lactating dairy cows fed 50% wheat silage and 50% concentrate (dry basis). In Experiment 1 with 12 midlactation Holsteins in a 4 X 4 Latin square design, intake, milk production, and milk composition were not affected by treatment. Dietary sodium bicarbonate and alfalfa hay did not alter blood, rumen, or fecal pH. Rumen volatile fatty acid pattern was not affected by sodium bicarbonate, but addition of hay resulted in higher molar percentage propionate and lower acetate: propionate ratios. In Experiment 2 with 32 early lactation cows (20 Holsteins and 12 Jerseys) in a complete randomized block design, supplementation of sodium bicarbonate, alfalfa hay, or both did not affect intake, milk production, or milk composition in the first 8 wk of lactation. Blood, rumen, and fecal pH were not affected by treatment. Dietary sodium bicarbonate did not alter ruminal volatile fatty acid profile, whereas addition of hay increased molar proportion acetate and decreased molar proportion butyrate. A shift in rumen fermentation was observed across treatments from wk 1 through 8 postpartum with molar proportions of acetate and butyrate increasing and molar proportion of propionate decreasing.  相似文献   

13.
Two experiments with rumen-fistulated dairy cows were conducted to evaluate the effects of feeding docosahexaenoic acid (DHA; C22:6 n-3)-enriched diets or diets provoking a decreased rumen pH on milk fatty acid composition. In the first experiment, dietary treatments were tested during 21-d experimental periods in a 4 × 4 Latin square design. Diets included a control diet, a starch-rich diet, a bicarbonate-buffered starch-rich diet, and a diet supplemented with DHA-enriched micro algae [Schizochytrium sp., 43.0 g/kg of dry matter intake (DMI)]. Algae were supplemented directly through the rumen fistula. The total mixed ration consisted of grass silage, corn silage, soybean meal, and a standard or glucogenic concentrate. The glucogenic and buffered glucogenic diet had no effect on rumen fermentation and milk fatty acid composition because, unexpectedly, no reduced rumen pH was detected. The algae diet had no effect on rumen pH but provoked decreased butyrate and increased isovalerate molar proportions in the rumen. In addition, algae supplementation affected rumen biohydrogenation of linoleic and linolenic acid as reflected in the modified milk fatty acid composition toward increased conjugated linoleic acid (CLA) cis-9 trans-11, CLA trans-9 cis-11, C18:1 trans-10, C18:1 trans-11, and C22:6 n-3 concentrations. Concomitantly, on average, a 45% decrease in DMI and milk yield was observed. Based on these drastic and impractical results, a second animal experiment was performed for 20 d in which 9.35 g/kg of total DMI of algae were incorporated in the concentrate and supplemented to 3 rumen-fistulated cows. Algae concentrate feeding increased rumen pH, which was associated with decreased rumen short-chain fatty acid concentrations. Moreover, a different shift in rumen short-chain fatty acid proportions was observed compared with the first experiment because molar proportions of butyrate, isobutyrate, and isovalerate increased, whereas acetate molar proportion decreased. The milk fatty acid profile changed as in experiment 1. However, the decrease in DMI and milk yield was less pronounced (on average 10%) at this algae supplementation level, whereas milk fat percentage decreased from 47.9 to 22.0 g/kg of milk after algae treatment. In conclusion, an algae supplementation level of about 10 g/kg of DMI proved effective to reduce the milk fat content and to modify the milk fatty acid composition toward increased CLA cis-9 trans-11, C18:1 trans, and DHA concentrations.  相似文献   

14.
《Journal of dairy science》2022,105(8):6710-6723
The objectives of this study were to examine the effects of pelleted starter diets differing in starch and neutral detergent fiber (NDF) content when fed differing levels of milk replacer (MR) on nutrient digestibility, whole gastrointestinal tract fermentation, pH, and inflammatory markers in dairy calves around weaning. Calves were randomly assigned to 1 of 4 dietary treatments (n = 12 per treatment) in a 2 × 2 factorial design based on daily MR allowance and amount of starch in pelleted starter (SPS): 0.691 kg of MR per day [dry matter (DM) basis] with starter containing low or high starch (12.0% and 35.6% starch on DM basis, respectively), and 1.382 kg of MR per day (DM) with starter containing low or high starch. All calves were housed in individual pens with straw bedding until wk 5 when bedding was covered. Calves were fed MR twice daily (0700 and 1700 h) containing 24.5% crude protein (DM) and 19.8% fat (DM), and had access to pelleted starter (increased by 50 g/d if there were no refusals before weaning and then 200 g/d during and after weaning) and water starting on d 1. Calves arrived between 1 and 3 d of age and were enrolled into an 8-wk study, with calves undergoing step-down weaning during wk 7. Starting on d 35, an indwelling pH logger was inserted orally to monitor rumen pH until calves were dissected at the end of the study in wk 8. Higher SPS calves showed an increase in rumen pH magnitude (1.46 ± 0.07) compared with low SPS calves (1.16 ± 0.07), a decrease in rumen pH in wk 8 (high SPS: 5.37 ± 0.12; low SPS: 5.57 ± 0.12), and a decrease in haptoglobin in wk 8 (high SPS: 0.24 ± 0.06 g/L; low SPS: 0.49 ± 0.06 g/L). The majority of differences came from increased starter intake in general, which suggests that with completely pelleted starters the differences in starch and NDF do not elicit drastic changes in fermentation, subsequent end products, and any resulting inflammation in calves around weaning.  相似文献   

15.
Diets offered to lactating dairy cows in the pasture-based dairy systems in southeastern Australia can vary in their dietary cation-anion difference (DCAD) from 0 to +76 mEq/100 g. The effects of such a range of DCAD on the health and production of cows, on a predominantly pasture-based diet, were examined in an indoor feeding experiment. Four groups of five cows were offered a diet of 5 kg of barley and ad libitum pasture, which is a diet representative of what is offered to cows in early lactation in the region. The cows were supplemented twice daily, with varying levels of salt combinations to alter the DCAD, which ranged from +21 to +127 mEq/100 g. Although a reduction in DCAD to +21 mEq/100 g caused a nonrespiratory systemic acidosis, there was a threshold value, above which blood and urine pH did not appear affected, although the strong ion difference of blood and urine and the blood bicarbonate concentration increased linearly (P < 0.05, 0.001, and 0.01, respectively). A DCAD above +21 mEq/100 g linearly reduced dry matter intake (P < 0.1), average daily bodyweight gain (P < 0.05), and milk protein yield (P < 0.05) but did not have a significant effect on the concentration of fat, protein, or lactose in milk. Although data were consistent with a tendency for milk yield to decrease as dietary cation-anion differences increased, this trend was not statistically significant. Urine hydroxyproline to creatinine ratio increased (P < 0.001) as dietary cation-anion difference increased, possibly suggesting an increased rate of uterine involution. It is concluded that a range in the dietary cation-anion difference, above +52 mEq/100 g, may have deleterious effects on dry matter intake and milk production.  相似文献   

16.
The objectives were to evaluate the effects of feeding diets with 2 levels of negative dietary cation-anion differences (DCAD) during the last 42 or 21 d of gestation on performance and metabolism in dairy cows. The hypothesis was that extending feeding from 21 to 42 d and reducing the DCAD from ?70 to ?180 mEq/kg of dry matter (DM) would not be detrimental to performance. Holstein cows at 230 d of gestation were blocked by parity prepartum (48 entering their second lactation and 66 entering their third or greater lactation) and 305-d milk yield, and randomly assigned to 1 of 4 treatments arranged as a 2 × 2 factorial. The 2 levels of DCAD, ?70 or ?180 mEq/kg of DM, and 2 feeding durations, the last 21 d (short) or the last 42 d (long) prepartum resulted in 4 treatments, short ?70 (n = 29), short ?180 (n = 29), long ?70 (n = 28) and long ?180 (n = 28). Cows in the short treatments were fed a diet with DCAD of +110 mEq/kg of DM from ?42 to ?22 d relative to calving. After calving, cows were fed the same diet and production and disease incidence were evaluated for 42 d in milk, whereas reproduction and survival was evaluated for 305 d in milk. Blood was sampled pre- and postpartum for quantification of metabolites and minerals. Reducing the DCAD linearly decreased prepartum DM intake between ?42 and ?22 d relative to calving (+110 mEq/kg of DM = 11.5 vs. ?70 mEq/kg of DM = 10.7 vs. ?180 mEq/kg of DM = 10.2 ± 0.4), and a more acidogenic diet in the last 21 d of the dry period reduced intake by 1.1 kg/d (?70 mEq/kg of DM = 10.8 vs. ?180 mEq/kg of DM = 9.7 ± 0.5 kg/d). Cows fed the ?180 mEq/kg of DM diet had increased concentrations of ionized Ca in blood on the day of calving (?70 mEq/kg of DM = 1.063 vs. ?180 mEq/kg of DM = 1.128 ± 0.020 mM). Extending the duration of feeding the diets with negative DCAD from 21 to 42 d reduced gestation length by 2 d (short = 277.2 vs. long = 275.3 d), milk yield by 2.5 kg/d (short = 40.4 vs. long = 37.9 ± 1.0 kg/d) and tended to increase days open because of reduced pregnancy per artificial insemination (short = 35.0 vs. long = 22.6%). Results suggest that increasing the duration of feeding diets with negative DCAD from 21 to 42 d prepartum might influence milk yield and reproduction of cows in the subsequent lactation, although yields of 3.5% fat- and energy-corrected milk did not differ with treatments. Reducing the DCAD from ?70 to ?180 mEq/kg of DM induced a more severe metabolic acidosis, increased ionized Ca concentrations prepartum and on the day of calving, and decreased colostrum yield in the first milking, but had no effects on performance in the subsequent lactation. Collectively, these data suggest that extending the feeding of an acidogenic diet beyond 21 d is unnecessary and might be detrimental to dairy cows, and a reduction in the DCAD from ?70 to ?180 mEq/kg of DM is not needed.  相似文献   

17.
The effects of supplementing diets with sulfate or glycinate Cu, Zn, and Mn on blood neutrophil function were examined in 27 late-lactation Holstein cows having a mean (± standard deviation) days in milk at time of neutrophil assays of 216 ± 31 d. Cows were assigned to 9 blocks of 3 and were grouped by parity, milk production, and days in milk. Cows within each block were randomly assigned to 1 of 3 treatments: (1) control diet devoid of supplemental Cu, Zn, and Mn; (2) diet supplemented with Cu, Zn, and Mn via sulfates; and (3) diet supplemented with Cu, Zn, and Mn via glycinate form. All cows were initially fed a control total mixed ration with basal mineral concentrations of 8 mg/kg of Cu, 35 mg/kg of Zn, and 35 mg/kg of Mn for 30 d. During the treatment period, cows fed diets with mineral supplementation via sulfates or glycinate forms had target total dry matter dietary concentrations of 18 mg/kg of Cu, 60 mg/kg of Zn, and 60 mg/kg of Mn for 30 d. Control cows were fed the control diet devoid of supplemental minerals for an additional 30 d. In vitro neutrophil functions were measured after 30 d on experimental or control diets. Percentage of neutrophils phagocytizing, intracellular kill, and phagocytic index did not differ among treatments. Serum concentrations of Cu, Zn, and Mn were also not affected by dietary treatment after 30 d. Results from this study demonstrated that dietary Cu, Zn, and Mn supplemented either as sulfates or glycinate form for 30 d had no effect on either in vitro blood neutrophil function or serum concentrations of Cu, Zn, and Mn in late-lactation Holstein cows.  相似文献   

18.
Our objective was to compare the effects of grinding versus steam-rolling of barley grain at 30 or 35% of diet dry matter on feed intake, chewing behavior, rumen fermentation, and milk production in high-producing lactating cows. Eight multiparous Holstein cows (85 ± 9 d in milk) were used in a replicated 4 × 4 Latin square design experiment with four 21-d periods. Each period included 14 d of adaptation and 7 d of sampling. Treatments included grinding (GB) or steam-rolling (SB) of barley grains at either 35 or 30% of dietary dry matter. Diets were prepared as a total mixed ration and delivered twice daily at 0730 and 1600 h. Neither processing method nor dietary barley grain inclusion rate affected dry matter intake, daily eating, ruminating and chewing times, rumen pH and major volatile fatty acid molar percentages, or milk percentages and yields of fat and protein. Energy-corrected milk yield increased for SB compared with GB at 35% but not at 30% barley grain. Feed efficiency was increased by SB, but was unaffected by dietary barley grain level. Results suggest that at 30% dietary barley grain, GB resulted in similar lactation performance as SB and that SB did not affect productivity when dietary barley grain increased from 30 to 35%. Regardless of barley grain level, grinding effectively maintained dry matter intake and rumen pH at 4 h postfeeding, whereas steam-rolling increased feed efficiency. Increasing barley grain from 30 to 35% of diet dry matter did not improve feed intake and milk production.  相似文献   

19.
Our objective was to examine the effect of dietary cation-anion difference (DCAD) on performance and acid-base status of cows postpartum. Sixteen Holstein and 8 Jersey multiparous cows were used immediately after calving to compare 2 DCAD [22 or 47 milliequivalents (Na + K − Cl − S)/100 g of dry matter (DM)] in a completely randomized design. The corn silage-based diets were formulated to contain 19.0% crude protein, 25.4% neutral detergent fiber, 15.0% acid detergent fiber, and 1.69 Mcal of net energy for lactation per kilogram (on a DM basis). An additional 2.3 kg of alfalfa hay was fed during the first 5 d postpartum, and then milk, blood, and urine samples were collected weekly for 6 wk. Repeated-measures (with an extra between-cow effect) mixed model analysis indicated that DCAD did not affect DM intake (18.2 and 18.3 kg/d), milk production (33.5 and 33.3 kg/d), milk composition (3.96 and 4.11% fat, 3.11 and 3.00% protein, and 8.95 and 8.83% solids-not-fat), jugular venous blood pH (7.395 and 7.400), HCO3 concentration (27.3 and 27.6 mEq/L), or partial pressure of CO2 (46.7 and 46.5 mmHg). Elevated coccygeal venous plasma branched-chain AA (431 and 558 μM) and ratio of essential AA to total AA (0.390 and 0.434) in cows with DCAD of 22 vs. 47 mEq/100 g of DM indicated that N metabolism in the rumen was affected, probably resulting in more microbial protein flowing to the small intestine. Urinary pH tended to increase with DCAD (8.12 vs. 8.20). Higher net acid excretion in cows with DCAD of 22 vs. 47 mEq/100 g of DM (−24 and −41 mM:mM) suggested that net acid excretion was much more indicative of acid load than blood acid-base parameters in cows postpartum. Intake of DM and performance of cows postpartum were not improved when DCAD increased from 22 to 47 mEq/100 g of DM, likely because cows immediately after calving respond more variably to dietary treatments and that makes treatment effects difficult to detect.  相似文献   

20.
《Journal of dairy science》2022,105(10):8036-8053
The objective of the study was to quantify the effects on dry matter intake (DMI), nutrient digestibility, gas exchange, milk production, and milk quality in dairy cows fed fresh grass harvested at different maturity stages. Sixteen Danish Holstein cows in mid-lactation were divided into 4 blocks and used in 4 incomplete 4 × 2 Latin squares with 2 periods of 21 d. The cows received 1 of 4 treatments in each period, resulting in 8 cows per treatment, as follows: grass-clover silage supplemented with 6 kg/d concentrate pellets (SILc), fresh grass harvested at late maturity stage supplemented with 6 kg/d concentrate pellets (LATc), fresh grass harvested at late maturity stage (LAT), and fresh grass harvested at early maturity stage (ERL). The cows were housed in tiestalls and milked twice daily. The cows had ad libitum access to the forage, and concentrate pellets were divided into equal amounts and fed separately in the morning and afternoon. Fecal samples were collected to determine apparent total-tract digestibility, and samples of rumen fluid were collected for determination of short chain fatty acid composition. Halters were used for measuring eating and rumination time. Gas exchange was measured in open-circuit respiration chambers. Total DMI was higher in LATc and ERL (16.9 ± 0.45 and 15.5 ± 0.39 kg/d, respectively) compared with LAT (14.1 ± 0.42 kg/d). Relative to SILc, cows fed fresh grass experienced a convex pattern in DMI during the experiment. The changes in DMI were related to changes in leaf to stem ratio, fiber concentration, and organic matter digestibility determined in vitro in samples of the fresh grass harvested throughout the experiment. The apparent total-tract digestibility of organic matter was higher in SILc and LAT compared with LATc. Methane yield was lower for LATc compared with LAT (19.5 ± 0.61 vs. 22.6 ± 0.55 g of CH4/kg of DMI), and was not different between LAT and ERL. Compared with LAT, milk yield was higher for ERL (21.1 ± 1.14 vs. 23.4 ± 1.11 kg/d) and energy-corrected milk (ECM) yield was higher for LATc (21.5 ± 0.99 vs. 25.3 ± 1.03 kg/d). We detected no differences in milk or ECM yield between SILc and LATc. Milk protein yield was higher and milk fat concentration was lower in LATc compared with LAT. The fatty acid percentages of ∑C4-C14:1 and ∑C16 in milk were higher for SILc compared with LATc, signifying pronounced de novo synthesis. The n-6:n-3 ratio in milk fatty acids was lower for SILc and LAT compared with LATc, indicating improved nutritional quality for SILc and LAT. However, retinol concentration in milk was lower in SILc compared with all other treatments. The study implies that feeding silage instead of fresh grass has no effect on DMI, ECM yield, or CH4 yield, and that concentrate supplementation can increase milk production, affects milk quality, and reduces the effect on climate, whereas feeding less mature grass increases DMI and milk yield, but has no effect on CH4 yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号